
µ-Limit Sets of Cellular Automata

Laurent Boyer, Martin Delacourt, Benjamin Hellouin de

Ménibus, Victor Poupet, Mathieu Sablik, Guillaume Theyssier

Journées SDA2 2015



General framework

Consider a dynamical system, for example
(
R,T : x 7→ 2x

)
.
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The limit set is the usual tool to deal with the asymptotic

behaviour:

ΛT =
⋂
n∈N

T n
(
R
)

= R

For the typical asymptotic behaviour, take a probability measure µ
on R:

∀n ∈ N, µ(T−n([a, b])) = µ
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De�nitions (Cellular Automata)

Consider the space X = AZd
for some �nite alphabet A, elements

are called con�gurations.

For any �nite subset P ⊂ Zd , de�ne AP = {cP , c ∈ X} the set of

patterns of shape P. Denote A∗ =
⋃
P AP the set of all �nite

patterns.

As a dynamical system, a d-dimensional Cellular Automaton (CA)

F is a shift-invariant continuous transformation of X . Equivalently,

is is given by an alphabet A, a �nite neighborhood N ⊂ Zd and a

local function δ : AN → A, such that:

∀c ∈ X ,∀, s ∈ Zd ,F (c)s = δ(cs+N )
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Example
As an example, take the MAX automaton, de�ned on alphabet

A = {0, 1} and neighborhood N = {(i1, . . . , id),
∑

j |ij | ≤ 1} by
local rule

δ : p ∈ N 7→

{
0 if ∀x ∈ N , px = 0

1 else
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Limit set

De�ne the limit language as:

L∞(F ) =
⋃
P
{p ∈ AP , ∀n ∈ N,∃c ∈ X ,F n(c)P = p}

Now de�ne the limit set as:

Λ(F ) = {c ∈ X ,∀P ⊂ Z2, cP ∈ L∞(F )}

In the case of MAX, there are in�nitely many con�gurations in

Λ(F ).
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µ-limit set
De�ne now the µ-limit language for some µ shift-invariant:

Lµ(F ) =
⋃
P
{p ∈ AP , µ(F−n([p])) 6→n→∞ 0}

And de�ne the µ-limit set as:

Λµ(F ) = {c ∈ X ,∀P ⊂ Z2, cP ∈ Lµ(F )}

In the case of MAX, for every �reasonable� µ, the µ-limit set

contains only the uniform con�guration.
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I How to handle them?

I Are there complex ones?

I How does it depend on the measure?
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I subshifts;

I included in the limit set;

I frequencable;

I the closure of the union of supports of the limit measures.
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Main theorem

Theorem

Let µ be a non-degenerate Bernoulli measure over A and (wi )i∈N a

computable sequence of square patterns of shape [1..i ]d .

Then

there exists an alphabet B ⊇ A and a cellular automaton F over B
such that:

u ∈ Lµ(F )⇐⇒ Freq(u,wi ) 9
i→∞

0.

This is essentially a way to answer previous questions, in particular

it gives computability results on µ-limit sets, and can be used to

construct �interesting� ones.
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Construction: struggle for life

Once the space is cleaned, seeds become hearts, and they need

more and more space to live as centers of organisms. At each time

tn = 2n, a new period starts and organisms grow as much as they

can.
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Construction: Vital space

During period n, if the distance between two hearts is 2n, their vital
spaces meet and we have a con�ict. The resolution of con�icts can

be decided arbitrarily: any natural choice will do, for example, the

northest heart survives and the other one dies.
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Construction: cycle of life

During each period, each organism computes some wi and writes it

all over its space.
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The proof of the result relies on some properties:

I The unclean space is measurably negligible.

I The technical states used to mark the organisms are negligible.

I The computation area and the space needed to store the age

are negligible.

I The organisms are larger and larger.
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As corollaries of this theorem, there exist cellular automata whose

µ-limit sets have the following properties:

I substitutive subshifts associated to primitive substitutions;

I language of complexity Σ3-complete;

I minimal e�ective subshifts;

I language without any word of low Kolmogorov complexity.

Also, we have a Rice theorem on µ-limit sets:

Theorem

Any non-trivial property of µ-limit sets is at least Π3-hard.
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