μ-Limit Sets of Cellular Automata

Laurent Boyer, Martin Delacourt, Benjamin Hellouin de Ménibus, Victor Poupet, Mathieu Sablik, Guillaume Theyssier

Journées SDA2 2015

General framework

Consider a dynamical system, for example ($\overline{\mathbb{R}}, T: x \mapsto 2 x$).

General framework

Consider a dynamical system, for example ($\overline{\mathbb{R}}, T: x \mapsto 2 x$).

The limit set is the usual tool to deal with the asymptotic behaviour:

$$
\Lambda_{T}=\bigcap_{n \in \mathbb{N}} T^{n}(\overline{\mathbb{R}})
$$

General framework

Consider a dynamical system, for example ($\overline{\mathbb{R}}, T: x \mapsto 2 x$).

The limit set is the usual tool to deal with the asymptotic behaviour:

$$
\Lambda_{T}=\bigcap_{n \in \mathbb{N}} T^{n}(\overline{\mathbb{R}})=\overline{\mathbb{R}}
$$

General framework

Consider a dynamical system, for example $(\overline{\mathbb{R}}, T: x \mapsto 2 x)$.

The limit set is the usual tool to deal with the asymptotic behaviour:

$$
\Lambda_{T}=\bigcap_{n \in \mathbb{N}} T^{n}(\overline{\mathbb{R}})=\overline{\mathbb{R}}
$$

For the typical asymptotic behaviour, take a probability measure μ on $\overline{\mathbb{R}}$:

General framework

Consider a dynamical system, for example $(\overline{\mathbb{R}}, T: x \mapsto 2 x)$.

The limit set is the usual tool to deal with the asymptotic behaviour:

$$
\Lambda_{T}=\bigcap_{n \in \mathbb{N}} T^{n}(\overline{\mathbb{R}})=\overline{\mathbb{R}}
$$

For the typical asymptotic behaviour, take a probability measure μ on $\overline{\mathbb{R}}$:

$$
\forall n \in \mathbb{N}, \mu\left(T^{-n}([a, b])\right)=\mu\left(\left[\frac{a}{2^{n}}, \frac{b}{2^{n}}\right]\right)
$$

Definitions (Cellular Automata)

Consider the space $X=\mathcal{A}^{\mathbb{Z}^{d}}$ for some finite alphabet \mathcal{A}, elements are called configurations.

Definitions (Cellular Automata)

Consider the space $X=\mathcal{A}^{\mathbb{Z}^{d}}$ for some finite alphabet \mathcal{A}, elements are called configurations.
For any finite subset $\mathcal{P} \subset \mathbb{Z}^{d}$, define $\mathcal{A}^{\mathcal{P}}=\left\{c_{\mathcal{P}}, c \in X\right\}$ the set of patterns of shape \mathcal{P}. Denote $\mathcal{A}^{*}=\bigcup_{\mathcal{P}} \mathcal{A}^{\mathcal{P}}$ the set of all finite patterns.

Definitions (Cellular Automata)

Consider the space $X=\mathcal{A}^{\mathbb{Z}^{d}}$ for some finite alphabet \mathcal{A}, elements are called configurations.
For any finite subset $\mathcal{P} \subset \mathbb{Z}^{d}$, define $\mathcal{A}^{\mathcal{P}}=\left\{c_{\mathcal{P}}, c \in X\right\}$ the set of patterns of shape \mathcal{P}. Denote $\mathcal{A}^{*}=\bigcup_{\mathcal{P}} \mathcal{A}^{\mathcal{P}}$ the set of all finite patterns.

As a dynamical system, a d-dimensional Cellular Automaton (CA) F is a shift-invariant continuous transformation of X.

Definitions (Cellular Automata)

Consider the space $X=\mathcal{A}^{\mathbb{Z}^{d}}$ for some finite alphabet \mathcal{A}, elements are called configurations.
For any finite subset $\mathcal{P} \subset \mathbb{Z}^{d}$, define $\mathcal{A}^{\mathcal{P}}=\left\{c_{\mathcal{P}}, c \in X\right\}$ the set of patterns of shape \mathcal{P}. Denote $\mathcal{A}^{*}=\bigcup_{\mathcal{P}} \mathcal{A}^{\mathcal{P}}$ the set of all finite patterns.

As a dynamical system, a d-dimensional Cellular Automaton (CA) F is a shift-invariant continuous transformation of X. Equivalently, is is given by an alphabet \mathcal{A}, a finite neighborhood $\mathcal{N} \subset \mathbb{Z}^{d}$ and a local function $\delta: \mathcal{A}^{\mathcal{N}} \rightarrow \mathcal{A}$, such that:

$$
\forall c \in X, \forall, s \in \mathbb{Z}^{d}, F(c)_{s}=\delta\left(c_{s+\mathcal{N}}\right)
$$

Example

As an example, take the MAX automaton, defined on alphabet $\mathcal{A}=\{0,1\}$ and neighborhood $\mathcal{N}=\left\{\left(i_{1}, \ldots, i_{d}\right), \sum_{j}\left|i_{j}\right| \leq 1\right\}$ by local rule

$$
\delta: p \in \mathcal{N} \mapsto\left\{\begin{array}{l}
0 \text { if } \forall x \in \mathcal{N}, p_{x}=0 \\
1 \text { else }
\end{array}\right.
$$

Example

As an example, take the MAX automaton, defined on alphabet $\mathcal{A}=\{0,1\}$ and neighborhood $\mathcal{N}=\left\{\left(i_{1}, \ldots, i_{d}\right), \sum_{j}\left|i_{j}\right| \leq 1\right\}$ by local rule

$$
\delta: p \in \mathcal{N} \mapsto\left\{\begin{array}{l}
0 \text { if } \forall x \in \mathcal{N}, p_{x}=0 \\
1 \text { else }
\end{array}\right.
$$

Example

As an example, take the MAX automaton, defined on alphabet $\mathcal{A}=\{0,1\}$ and neighborhood $\mathcal{N}=\left\{\left(i_{1}, \ldots, i_{d}\right), \sum_{j}\left|i_{j}\right| \leq 1\right\}$ by local rule

$$
\delta: p \in \mathcal{N} \mapsto\left\{\begin{array}{l}
0 \text { if } \forall x \in \mathcal{N}, p_{x}=0 \\
1 \text { else }
\end{array}\right.
$$

Example

As an example, take the MAX automaton, defined on alphabet $\mathcal{A}=\{0,1\}$ and neighborhood $\mathcal{N}=\left\{\left(i_{1}, \ldots, i_{d}\right), \sum_{j}\left|i_{j}\right| \leq 1\right\}$ by local rule

$$
\delta: p \in \mathcal{N} \mapsto\left\{\begin{array}{l}
0 \text { if } \forall x \in \mathcal{N}, p_{x}=0 \\
1 \text { else }
\end{array}\right.
$$

Limit set

Define the limit language as:

$$
L_{\infty}(F)=\bigcup_{\mathcal{P}}\left\{p \in \mathcal{A}^{\mathcal{P}}, \forall n \in \mathbb{N}, \exists c \in X, F^{n}(c)_{\mathcal{P}}=p\right\}
$$

Limit set

Define the limit language as:

$$
L_{\infty}(F)=\bigcup_{\mathcal{P}}\left\{p \in \mathcal{A}^{\mathcal{P}}, \forall n \in \mathbb{N}, \exists c \in X, F^{n}(c)_{\mathcal{P}}=p\right\}
$$

Now define the limit set as:

$$
\Lambda(F)=\left\{c \in X, \forall \mathcal{P} \subset \mathbb{Z}^{2}, c_{\mathcal{P}} \in L_{\infty}(F)\right\}
$$

Limit set

Define the limit language as:

$$
L_{\infty}(F)=\bigcup_{\mathcal{P}}\left\{p \in \mathcal{A}^{\mathcal{P}}, \forall n \in \mathbb{N}, \exists c \in X, F^{n}(c)_{\mathcal{P}}=p\right\}
$$

Now define the limit set as:

$$
\Lambda(F)=\left\{c \in X, \forall \mathcal{P} \subset \mathbb{Z}^{2}, c_{\mathcal{P}} \in L_{\infty}(F)\right\}
$$

In the case of MAX, there are infinitely many configurations in $\Lambda(F)$.

 - -

 T-

 - -

μ-limit set

Define now the μ-limit language for some μ shift-invariant:

$$
L_{\mu}(F)=\bigcup_{\mathcal{P}}\left\{p \in \mathcal{A}^{\mathcal{P}}, \mu\left(F^{-n}([p])\right) \not \nrightarrow n \rightarrow \infty 0\right\}
$$

μ-limit set

Define now the μ-limit language for some μ shift-invariant:

$$
L_{\mu}(F)=\bigcup_{\mathcal{P}}\left\{p \in \mathcal{A}^{\mathcal{P}}, \mu\left(F^{-n}([p])\right) \not \nrightarrow n \rightarrow \infty 0\right\}
$$

And define the μ-limit set as:

$$
\Lambda_{\mu}(F)=\left\{c \in X, \forall \mathcal{P} \subset \mathbb{Z}^{2}, c_{\mathcal{P}} \in L_{\mu}(F)\right\}
$$

μ-limit set
Define now the μ-limit language for some μ shift-invariant:

$$
L_{\mu}(F)=\bigcup_{\mathcal{P}}\left\{p \in \mathcal{A}^{\mathcal{P}}, \mu\left(F^{-n}([p])\right) \not \nrightarrow n \rightarrow \infty 0\right\}
$$

And define the μ-limit set as:

$$
\Lambda_{\mu}(F)=\left\{c \in X, \forall \mathcal{P} \subset \mathbb{Z}^{2}, c_{\mathcal{P}} \in L_{\mu}(F)\right\}
$$

In the case of MAX, for every "reasonable" μ, the μ-limit set contains only the uniform configuration.

Questions

- What is the structure of these objects?

Questions

- What is the structure of these objects?
- How to handle them?

Questions

- What is the structure of these objects?
- How to handle them?
- Are there complex ones?

Questions

- What is the structure of these objects?
- How to handle them?
- Are there complex ones?
- How does it depend on the measure?

For any μ, μ-limit sets are:

- subshifts;

For any μ, μ-limit sets are:

- subshifts;
- included in the limit set;

For any μ, μ-limit sets are:

- subshifts;
- included in the limit set;
- frequencable;

For any μ, μ-limit sets are:

- subshifts;
- included in the limit set;
- frequencable;
- the closure of the union of supports of the limit measures.

Main theorem

Theorem
Let μ be a non-degenerate Bernoulli measure over \mathcal{A} and $\left(w_{i}\right)_{i \in \mathbb{N}}$ a computable sequence of square patterns of shape $[1 . . i]^{d}$.

Main theorem

Theorem
Let μ be a non-degenerate Bernoulli measure over \mathcal{A} and $\left(w_{i}\right)_{i \in \mathbb{N}}$ a computable sequence of square patterns of shape $[1 . . i]^{d}$. Then there exists an alphabet $\mathcal{B} \supseteq \mathcal{A}$ and a cellular automaton F over \mathcal{B} such that:

$$
u \in L_{\mu}(F) \Longleftrightarrow \operatorname{Freq}\left(u, w_{i}\right) \underset{i \rightarrow \infty}{\nrightarrow} 0
$$

Main theorem

Theorem
Let μ be a non-degenerate Bernoulli measure over \mathcal{A} and $\left(w_{i}\right)_{i \in \mathbb{N}}$ a computable sequence of square patterns of shape $[1 . . i]^{d}$. Then there exists an alphabet $\mathcal{B} \supseteq \mathcal{A}$ and a cellular automaton F over \mathcal{B} such that:

$$
u \in L_{\mu}(F) \Longleftrightarrow \operatorname{Freq}\left(u, w_{i}\right) \underset{i \rightarrow \infty}{\nrightarrow} 0
$$

This is essentially a way to answer previous questions, in particular it gives computability results on μ-limit sets, and can be used to construct "interesting" ones.

Construction: cleaning the space
One of the principles is to clean the space using one special state: the seed.

Construction: cleaning the space
One of the principles is to clean the space using one special state: the seed.

Construction: cleaning the space
One of the principles is to clean the space using one special state: the seed.

Construction: cleaning the space
One of the principles is to clean the space using one special state: the seed.

Construction: cleaning the space
One of the principles is to clean the space using one special state: the seed.

Construction: cleaning the space
One of the principles is to clean the space using one special state: the seed.

Construction: cleaning the space
One of the principles is to clean the space using one special state: the seed.

Construction: struggle for life

Once the space is cleaned, seeds become hearts, and they need more and more space to live as centers of organisms. At each time $t_{n}=2^{n}$, a new period starts and organisms grow as much as they can.

Construction: struggle for life

Once the space is cleaned, seeds become hearts, and they need more and more space to live as centers of organisms. At each time $t_{n}=2^{n}$, a new period starts and organisms grow as much as they can.

Construction: struggle for life

Once the space is cleaned, seeds become hearts, and they need more and more space to live as centers of organisms. At each time $t_{n}=2^{n}$, a new period starts and organisms grow as much as they can.

Construction: Vital space

During period n, if the distance between two hearts is $2 n$, their vital spaces meet and we have a conflict. The resolution of conflicts can be decided arbitrarily: any natural choice will do, for example, the northest heart survives and the other one dies.

Construction: Vital space

During period n, if the distance between two hearts is $2 n$, their vital spaces meet and we have a conflict. The resolution of conflicts can be decided arbitrarily: any natural choice will do, for example, the northest heart survives and the other one dies.

Construction: Vital space

During period n, if the distance between two hearts is $2 n$, their vital spaces meet and we have a conflict. The resolution of conflicts can be decided arbitrarily: any natural choice will do, for example, the northest heart survives and the other one dies.

Construction: cycle of life

During each period, each organism computes some w_{i} and writes it all over its space.

Construction: cycle of life

During each period, each organism computes some w_{i} and writes it all over its space.

Construction: cycle of life

During each period, each organism computes some w_{i} and writes it all over its space.

The proof of the result relies on some properties:

The proof of the result relies on some properties:

- The unclean space is measurably negligible.

The proof of the result relies on some properties:

- The unclean space is measurably negligible.
- The technical states used to mark the organisms are negligible.

The proof of the result relies on some properties:

- The unclean space is measurably negligible.
- The technical states used to mark the organisms are negligible.
- The computation area and the space needed to store the age are negligible.

The proof of the result relies on some properties:

- The unclean space is measurably negligible.
- The technical states used to mark the organisms are negligible.
- The computation area and the space needed to store the age are negligible.
- The organisms are larger and larger.

As corollaries of this theorem, there exist cellular automata whose μ-limit sets have the following properties:

- substitutive subshifts associated to primitive substitutions;

As corollaries of this theorem, there exist cellular automata whose μ-limit sets have the following properties:

- substitutive subshifts associated to primitive substitutions;
- language of complexity Σ_{3}-complete;

As corollaries of this theorem, there exist cellular automata whose μ-limit sets have the following properties:

- substitutive subshifts associated to primitive substitutions;
- language of complexity Σ_{3}-complete;
- minimal effective subshifts;

As corollaries of this theorem, there exist cellular automata whose μ-limit sets have the following properties:

- substitutive subshifts associated to primitive substitutions;
- language of complexity Σ_{3}-complete;
- minimal effective subshifts;
- language without any word of low Kolmogorov complexity.

As corollaries of this theorem, there exist cellular automata whose μ-limit sets have the following properties:

- substitutive subshifts associated to primitive substitutions;
- language of complexity Σ_{3}-complete;
- minimal effective subshifts;
- language without any word of low Kolmogorov complexity.

Also, we have a Rice theorem on μ-limit sets:
Theorem
Any non-trivial property of μ-limit sets is at least Π_{3}-hard.

Future work

- Generalization to other classes of measures.

Future work

- Generalization to other classes of measures.
- Other characterization of the set of μ-limit sets.

Future work

- Generalization to other classes of measures.
- Other characterization of the set of μ-limit sets.
- Dynamics over the μ-limit set.

Future work

- Generalization to other classes of measures.
- Other characterization of the set of μ-limit sets.
- Dynamics over the μ-limit set.
- Surjective CA?

