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Definitions (Cellular Automata)

Consider the space X = AZ for some finite alphabet A, elements
are called configurations.

For any finite subset P C Z9, define A¥ = {cp, c € X} the set of
patterns of shape P. Denote A* = J, A" the set of all finite
patterns.

As a dynamical system, a d-dimensional Cellular Automaton (CA)
F is a shift-invariant continuous transformation of X. Equivalently,
is is given by an alphabet A, a finite neighborhood A" C Z9 and a
local function 6 : AV — A, such that:

Ve e X,¥,s € Z9 F(c)s = 6(cssnr)



Example
As an example, take the MAX automaton, defined on alphabet
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Example

As an example, take the MAX automaton, defined on alphabet

A ={0,1} and neighborhood A/

< dd); D lijl < 1} by

{(,-.

0if Vx € N, px

1 else

local rule

0

6:p€N~—>{
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Limit set

Define the limit language as:

Loo(F) = J{p € A”,¥n e N,3c € X, F"(c)p = p}
P

Now define the limit set as:

AF) ={c € X,YP C Z? cp € L(F)}
In the case of MAX, there are infinitely many
A(F).

configurations in
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{c € X,YP C Z? cp € L,(F)}

Lu(F) = J{p € A7, u(F"([P])) #n—s00 O}
Nu(F)

In the case of MAX, for every “reasonable” p, the p-limit set

Define now the p-limit language for some p shift-invariant:
contains only the uniform configuration.

And define the p-limit set as:

p-limit set
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What is the structure of these objects?

How to handle them?
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Are there complex ones?

v

How does it depend on the measure?
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For any u, p-limit sets are:
» subshifts;
» included in the limit set;
» frequencable;

» the closure of the union of supports of the limit measures.
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computable sequence of square patterns of shape [1../]9. Then
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such that:
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This is essentially a way to answer previous questions, in particular
it gives computability results on p-limit sets, and can be used to
construct “interesting” ones.
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The proof of the result relies on some properties:

» The unclean space is measurably negligible.
» The technical states used to mark the organisms are negligible.

» The computation area and the space needed to store the age
are negligible.

» The organisms are larger and larger.
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As corollaries of this theorem, there exist cellular automata whose
u-limit sets have the following properties:

» substitutive subshifts associated to primitive substitutions;

v

language of complexity ¥3-complete;

v

minimal effective subshifts;

v

language without any word of low Kolmogorov complexity.

Also, we have a Rice theorem on pu-limit sets:

Theorem
Any non-trivial property of pu-limit sets is at least 3-hard.
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Other characterization of the set of u-limit sets.

» Dynamics over the p-limit set.

v

Surjective CA?



