Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Pavel Heller, joint work with Marie-Pierre Béal

RDMath IdF

* iledefrance

> 9 April 2015
> Journées SDA 2 du GDR IM
> Université Paris-Est Marne-la-Vallée

Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1-sided SFT's [Williams, 73]
- unknown for 1-sided sofic shifts
- unknown for 2-sided SFT's

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams' result.

Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1 -sided SFT's [Williams, 73]
- unknown for 1 -sided sofic shifts
- unknown for 2-sided SFT's

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams' result.

Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1 -sided SFT's [Williams, 73]
- unknown for 1-sided sofic shifts
- unknown for 2-sided SFT's

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams' result.

Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1 -sided SFT's [Williams, 73]
- unknown for 1-sided sofic shifts
- unknown for 2-sided SFT's

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams' result.

Outline

Standard notions Shifts (of finite type) Conjugacy

1-sided finite-type-Dyck shifts Dyck shifts Finite-type-Dyck shifts

Conjugacy for 1 -sided FTD shifts
Deciding conjugacy

Outline

Standard notions
Shifts (of finite type)
Conjugacy

1-sided finite-type-Dyck shifts
Dyck shifts
Finite-type-Dyck shifts

Conjugacy for 1 -sided FTD shifts
Deciding conjugacy

Shifts

- A finite alphabet
- A^{*} set of finite words over A
- $A^{\mathbb{Z}}$ set of bi-infinite sequences over A
- $A^{-\mathbb{N}}$ set left-infinite sequences over A
\square
$X \subset A^{\mathbb{Z}}\left(\right.$ resp. $\left.A^{-\mathbb{N}}\right)$ is called a (one-sided) shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^{*}$. We denote $X=X_{F}$.

$$
X \text { is equipped with a shift map and topology. }
$$

Shifts

- A finite alphabet
- A^{*} set of finite words over A
- $A^{\mathbb{Z}}$ set of bi-infinite sequences over A
- $A^{-\mathbb{N}}$ set left-infinite sequences over A

Shift

$X \subset A^{\mathbb{Z}}$ (resp. $A^{-\mathbb{N}}$) is called a (one-sided) shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^{*}$.
X is equipped with a shift map and topology.

Shifts

- A finite alphabet
- A^{*} set of finite words over A
- $A^{\mathbb{Z}}$ set of bi-infinite sequences over A
- $A^{-\mathbb{N}}$ set left-infinite sequences over A

Shift

$X \subset A^{\mathbb{Z}}$ (resp. $A^{-\mathbb{N}}$) is called a (one-sided) shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^{*}$. We denote $X=X_{F}$.
X is equipped with a shift map and topology.

Shifts

- A finite alphabet
- A^{*} set of finite words over A
- $A^{\mathbb{Z}}$ set of bi-infinite sequences over A
- $A^{-\mathbb{N}}$ set left-infinite sequences over A

Shift

$X \subset A^{\mathbb{Z}}$ (resp. $A^{-\mathbb{N}}$) is called a (one-sided) shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^{*}$. We denote $X=X_{F}$.
X is equipped with a shift map and topology.

Sofic shift
$X=X_{F}$ where F is regular is called a sofic shift.

Shift of finite type
$X=X_{F}$ where F is finite is called a shift of finite type.

A sofic shift can be represented by a finite automaton; a SFT by a local finite automaton.

Sofic shift
$X=X_{F}$ where F is regular is called a sofic shift.

Shift of finite type
$X=X_{F}$ where F is finite is called a shift of finite type.

A sofic shift can be represented by a finite automaton; a SFT by a local finite automaton.

Sofic shift

$X=X_{F}$ where F is regular is called a sofic shift.

Shift of finite type
$X=X_{F}$ where F is finite is called a shift of finite type.

A sofic shift can be represented by a finite automaton; a SFT by a local finite automaton.

Example: shift of finite type
Let $A=\{a, b, c\}$. Consider X_{F} for $F=\{b a, b b, a c, c c\}$. Represented by the following local automaton.

Shift conjugacy

```
Block map
Given A,B alphabets and X shift over A. }\Phi:\mp@subsup{A}{}{\mathbb{Z}}->\mp@subsup{B}{}{\mathbb{Z}}\mathrm{ is a block map if
there are non-negative integers m,a and a function \phi: A}\mp@subsup{A}{}{m+1+a}->B\mathrm{ such
that for any }x\inX\mathrm{ and any }
\[
\dot{\phi}(x)_{i}=\phi\left(x_{i-m} \cdots x_{i+a}\right)
\]
Analougously can be defined for one-sided shifts, setting \(a=0\).
Conjugacy
Two shifts \(X, Y\) are conjugate if there is a bijective block map
\(\Phi: X \rightarrow Y\)
Note: the inverse is also block map.
```


Shift conjugacy

Block map

Given A, B alphabets and X shift over $A \cdot \Phi: A^{\mathbb{Z}} \rightarrow B^{\mathbb{Z}}$ is a block map if there are non-negative integers m, a and a function $\phi: A^{m+1+a} \rightarrow B$ such that for any $x \in X$ and any i

$$
\Phi(x)_{i}=\phi\left(x_{i-m} \cdots x_{i+a}\right) .
$$

Analougously can be defined for one-sided shifts, setting $a=0$.
Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map
Note: the inverse is also block map.

Shift conjugacy

Block map

Given A, B alphabets and X shift over $A \cdot \Phi: A^{\mathbb{Z}} \rightarrow B^{\mathbb{Z}}$ is a block map if there are non-negative integers m, a and a function $\phi: A^{m+1+a} \rightarrow B$ such that for any $x \in X$ and any i

$$
\Phi(x)_{i}=\phi\left(x_{i-m} \cdots x_{i+a}\right) .
$$

Analougously can be defined for one-sided shifts, setting $a=0$.
Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map
Note: the inverse is also block map.

Shift conjugacy

Block map

Given A, B alphabets and X shift over $A \cdot \Phi: A^{\mathbb{Z}} \rightarrow B^{\mathbb{Z}}$ is a block map if there are non-negative integers m, a and a function $\phi: A^{m+1+a} \rightarrow B$ such that for any $x \in X$ and any i

$$
\Phi(x)_{i}=\phi\left(x_{i-m} \cdots x_{i+a}\right) .
$$

Analougously can be defined for one-sided shifts, setting $a=0$.
Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map $\Phi: X \rightarrow Y$.
Note: the inverse is also block map.

Shift conjugacy

Block map

Given A, B alphabets and X shift over $A \cdot \Phi: A^{\mathbb{Z}} \rightarrow B^{\mathbb{Z}}$ is a block map if there are non-negative integers m, a and a function $\phi: A^{m+1+a} \rightarrow B$ such that for any $x \in X$ and any i

$$
\Phi(x)_{i}=\phi\left(x_{i-m} \cdots x_{i+a}\right) .
$$

Analougously can be defined for one-sided shifts, setting $a=0$.
Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map $\Phi: X \rightarrow Y$.
Note: the inverse is also block map.

Outline

Standard notions
 Shifts (of finite type) Conjugacy

1-sided finite-type-Dyck shifts
Dyck shifts
Finite-type-Dyck shifts

Conjugacy for 1 -sided FTD shifts
Deciding conjugacy

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.
E.g.

Similar rules can be introduced for any SFT defined on an alphabet of brackets.

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.
E.g.

$$
\begin{aligned}
& \cdots)(()(())())) \cdots \\
& \cdots][()[()]())) \cdots
\end{aligned}
$$

Similar rules can be introduced for any SFT defined on an alphabet of brackets.

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.
E.g.

$$
\begin{aligned}
& \cdots)(()(())())) \cdots \\
& \cdots] f(()[()]())) \cdots
\end{aligned}
$$

NOT

$$
\cdots][(()[[])())) \cdots
$$

Similar rules can be introduced for any SFT defined on an alphabet of brackets.

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.
E.g.

$$
\begin{aligned}
& \cdots)(()(())())) \cdots \\
& \cdots][(()[()]())) \cdots
\end{aligned}
$$

NOT

$$
\cdots]](()[[])())) \cdots
$$

Similar rules can be introduced for any SFT defined on an alphabet of brackets.

Tripartitioned alphabet

Let the alphabet be divided into three disjoint sets of call, return, and internal symbols:

$$
A=A_{c} \sqcup A_{r} \sqcup A_{i} .
$$

Example
Consider the SFT defined by the automaton, where $A_{c}=\{(,[\}$, $\left.\left.A_{r}=\{),\right]\right\}, A_{d}=\{j, k\}$

Tripartitioned alphabet

Let the alphabet be divided into three disjoint sets of call, return, and internal symbols:

$$
A=A_{c} \sqcup A_{r} \sqcup A_{i} .
$$

Example
Consider the SFT defined by the automaton, where $A_{c}=\{(,[\}$, $\left.\left.A_{r}=\{),\right]\right\}, A_{d}=\{j, k\}$

Let's add Dyck constraints. Prevent

$$
\cdots(([k j k j]) k j((\cdots
$$

from appearing in the shift...

The SFT already avoids some finite set of forbiden factors F. So why not also forbid matching the pairs from the set $U=\{\langle(]\rangle,,\langle[)\rangle$,$\} .$

Let's add Dyck constraints. Prevent

$$
\cdots(([k j k j]] \text { kj }(\text { (} \cdots
$$

from appearing in the shift...
The SFT already avoids some finite set of forbiden factors F. So why not also forbid matching the pairs from the set $U=\{\langle(]\rangle,,\langle[)\rangle$,

Let's add Dyck constraints. Prevent

$$
\cdots(([k j k j]] k j((\cdots
$$

from appearing in the shift...
The SFT already avoids some finite set of forbiden factors F. So why not also forbid matching the pairs from the set $U=\{\langle(]\rangle,,\langle[)\rangle$,$\} .$

Let's add Dyck constraints. Prevent

$$
\cdots(([k j k j]] \text { kj }(\text { (} \cdots
$$

from appearing in the shift...
The SFT already avoids some finite set of forbiden factors F. So why not also forbid matching the pairs from the set $U=\{\langle(]\rangle,,\langle[)\rangle$,$\} .$ We can record the same information in the automaton by joining edges whose symbols are allowed to match.

But we could (dis)allow any other combination of call and return symbols.

corresponding to forbidden matching $U=\{\langle(]\rangle$,
We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by k. Hence distinguishing

from

But we could (dis)allow any other combination of call and return symbols. Consider

corresponding to forbidden matching $U=\{\langle(]\rangle$,$\} .$
We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by k. Hence distinguishing

from

But we could (dis)allow any other combination of call and return symbols. Consider

corresponding to forbidden matching $U=\{\langle(]\rangle$,$\} .$
We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by k. Hence distinguishing

$$
\cdots) j k((j k))(\cdots
$$

from

But we could (dis)allow any other combination of call and return symbols. Consider

corresponding to forbidden matching $U=\{\langle(]\rangle$,$\} .$
We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by k. Hence distinguishing

$$
\cdots) j k((j k))(\cdots
$$

from

$$
\cdots))((j k))(\cdots
$$

1-sided finite-type-Dyck shift

We call 1 -sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^{m} A_{c} \times A^{m} A_{r}$ for some non-negative integer m.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.

1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^{m} A_{c} \times A^{m} A_{r}$ for some non-negative integer m. We denote $X=\mathrm{X}_{F, U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.

1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^{m} A_{c} \times A^{m} A_{r}$ for some non-negative integer m. We denote $X=\mathrm{X}_{F, U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.

1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^{m} A_{c} \times A^{m} A_{r}$ for some non-negative integer m. We denote $X=X_{F, U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges.
- The language of factors is a visibly pushdown language.

1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^{m} A_{c} \times A^{m} A_{r}$ for some non-negative integer m. We denote $X=X_{F, U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- The language of factors is a visibly pushdown language.

1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^{m} A_{c} \times A^{m} A_{r}$ for some non-negative integer m. We denote $X=\mathrm{X}_{F, U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.

Outline

Standard notions Shifts (of finite type) Conjugacy
 1-sided finite-type-Dyck shifts Dyck shifts Finite-type-Dyck shifts

Conjugacy for 1 -sided FTD shifts Deciding conjugacy

Proper block map
A block map Φ is proper when $\operatorname{Phi}(x)_{j} \in A_{c}$ (resp. $\left.A_{r}, A_{i}\right)$ if and only if $x_{j} \in A_{c}\left(\right.$ resp. $\left.A_{r}, A_{i}\right)$.

Matched-return word
A word over tripartitioned alphabet A is matched-return if it "has no unmatched return symbols". Formally, if each its prefix contains at least as many call symbols as return symbols.

MR-extensible shift
A shift X is called $M R$-extensible if for any of its blocks, u exists a non-empty matched-return word v such that $u v$ is a block of X.

Proper block map
A block map Φ is proper when $\operatorname{Phi}(x)_{j} \in A_{c}$ (resp. $\left.A_{r}, A_{i}\right)$ if and only if $x_{j} \in A_{c}$ (resp. A_{r}, A_{i}).

Matched-return word
A word over tripartitioned alphabet A is matched-return if it "has no unmatched return symbols".
as many call symbols as return symbols.
MR-extensible shift
A shift X is called $M R$-extensible if for any of its blocks, u exists a
non-empty matched-return word v such that $u v$ is a block of X.

Proper block map
A block map Φ is proper when $\operatorname{Phi}(x)_{j} \in A_{c}$ (resp. A_{r}, A_{i}) if and only if $x_{j} \in A_{c}\left(\right.$ resp. $\left.A_{r}, A_{i}\right)$.

Matched-return word
A word over tripartitioned alphabet A is matched-return if it " has no unmatched return symbols". Formally, if each its prefix contains at least as many call symbols as return symbols.

MR-extensible shift
A shift X is called $M R$-extensible if for any of its blocks, u exists a
non-empty matched-return word v such that $u v$ is a block of X.

Proper block map

A block map Φ is proper when $\operatorname{Phi}(x)_{j} \in A_{c}$ (resp. $\left.A_{r}, A_{i}\right)$ if and only if $x_{j} \in A_{c}\left(\right.$ resp. $\left.A_{r}, A_{i}\right)$.

Matched-return word
A word over tripartitioned alphabet A is matched-return if it " has no unmatched return symbols". Formally, if each its prefix contains at least as many call symbols as return symbols.

MR-extensible shift
A shift X is called $M R$-extensible if for any of its blocks, u exists a non-empty matched-return word v such that $u v$ is a block of X.

The result

Theorem
It is decidable in an effective way whether two one-sided finite-type-Dyck shifts which are MR-extensible are properly conjugate.

- Not all 1-sided FTD shifts are MR-extensible, but many are.
- Dyck and Motzkin shifts are MR-extensible.
- Our examples were MR-extensible.

The result

Theorem
It is decidable in an effective way whether two one-sided finite-type-Dyck shifts which are MR-extensible are properly conjugate.

- Not all 1-sided FTD shifts are MR-extensible, but many are.
- Dyck and Motzkin shifts are MR-extensible.
- Our examples were MR-extensible.

Deciding the conjugacy

In the process of deciding, the operations of in-splitting and in-merging Dyck graphs (multigraph with matching of some edges) are crucial.

Deciding the conjugacy

During the in-splitting a state is divided into two.
Each new state receives a precise copy of its out-going edges (including the matching relations.

Deciding the conjugacy

During the in-splitting a state is divided into two.
Each new state receives a precise copy of its out-going edges (including the matching relations.

Deciding the conjugacy

During the in-splitting a state is divided into two.
Each new state receives a precise copy of its out-going edges (including the matching relations.
The original in-coming edges are partitioned between the two new states.

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets $F \subseteq A^{m+1}, U \subseteq A^{m} A_{c} \times A^{m} A_{r}:$

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets $F \subseteq A^{m+1}, U \subseteq A^{m} A_{c} \times A^{m} A_{r}:$

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets $F \subseteq A^{m+1}, U \subseteq A^{m} A_{c} \times A^{m} A_{r}:$

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets $F \subseteq A^{m+1}, U \subseteq A^{m} A_{c} \times A^{m} A_{r}:$

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets $F \subseteq A^{m+1}, U \subseteq A^{m} A_{c} \times A^{m} A_{r}:$

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)

