Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Pavel Heller, joint work with Marie-Pierre Béal

9 April 2015
Journées SDA 2 du GDR IM
Université Paris-Est Marne-la-Vallée
Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1-sided SFT’s [Williams, 73]
- unknown for 1-sided sofic shifts
- unknown for 2-sided SFT’s

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams’ result.
Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1-sided SFT’s [Williams, 73]
- unknown for 1-sided sofic shifts
- unknown for 2-sided SFT’s

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams’ result.
Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1-sided SFT’s [Williams, 73]
- unknown for 1-sided sofic shifts
- unknown for 2-sided SFT’s

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams’ result.
Deciding conjugacy for certain class of one-sided finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

- decidable for 1-sided SFT’s [Williams, 73]
- unknown for 1-sided sofic shifts
- unknown for 2-sided SFT’s

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima, 2013]

We present an extension of Williams’ result.
Outline

Standard notions
 Shifts (of finite type)
 Conjugacy

1-sided finite-type-Dyck shifts
 Dyck shifts
 Finite-type-Dyck shifts

Conjugacy for 1-sided FTD shifts
 Deciding conjugacy
Outline

Standard notions
 Shifts (of finite type)
 Conjugacy

1-sided finite-type-Dyck shifts
 Dyck shifts
 Finite-type-Dyck shifts

Conjugacy for 1-sided FTD shifts
 Deciding conjugacy
Shifts

- A finite alphabet
- A^* set of finite words over A
- $A^\mathbb{Z}$ set of bi-infinite sequences over A
- $A^{-\mathbb{N}}$ set left-infinite sequences over A

Shift

$X \subset A^\mathbb{Z}$ (resp. $A^{-\mathbb{N}}$) is called a (one-sided) shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^*$. We denote $X = X_F$.

X is equipped with a shift map and topology.
Shifts

- A finite alphabet
- $A^* \text{ set of finite words over } A$
- $A^\mathbb{Z} \text{ set of bi-infinite sequences over } A$
- $A^{-\mathbb{N}} \text{ set left-infinite sequences over } A$

Shift

$X \subset A^\mathbb{Z}$ (resp. $A^{-\mathbb{N}}$) is called a *(one-sided)* shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^*$. We denote $X = X_F$.

X is equipped with a shift map and topology.
Shifts

- A finite alphabet
- A^* set of finite words over A
- $A^\mathbb{Z}$ set of bi-infinite sequences over A
- $A^{-\mathbb{N}}$ set left-infinite sequences over A

Shift

$X \subset A^\mathbb{Z}$ (resp. $A^{-\mathbb{N}}$) is called a *one-sided* shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^*$. We denote $X = X_F$.

X is equipped with a shift map and topology.
Shifts

- A finite alphabet
- A^* set of finite words over A
- $A^\mathbb{Z}$ set of bi-infinite sequences over A
- $A^{-\mathbb{N}}$ set left-infinite sequences over A

Shift

$X \subset A^\mathbb{Z}$ (resp. $A^{-\mathbb{N}}$) is called a (one-sided) shift if it is the set of sequences avoiding some set of forbidden words $F \subset A^*$. We denote $X = X_F$.

X is equipped with a shift map and topology.
Sofic shift

$X = X_F$ where F is regular is called a *sofic shift*.

Shift of finite type

$X = X_F$ where F is finite is called a *shift of finite type*.

A sofic shift can be represented by a finite automaton; a SFT by a local finite automaton.
Sofic shift

$X = X_F$ where F is regular is called a *sofic shift*.

Shift of finite type

$X = X_F$ where F is finite is called a *shift of finite type*.

A sofic shift can be represented by a finite automaton; a SFT by a local finite automaton.
Sofic shift

$X = X_F$ where F is regular is called a *sofic shift*.

Shift of finite type

$X = X_F$ where F is finite is called a *shift of finite type*.

A sofic shift can be represented by a finite automaton; a SFT by a local finite automaton.
Example: shift of finite type
Let $A = \{a, b, c\}$. Consider X_F for $F = \{ba, bb, ac, cc\}$. Represented by the following local automaton.

![Automaton Diagram]

1. Let $A = \{a, b, c\}$.
2. Consider X_F for $F = \{ba, bb, ac, cc\}$.
3. Represented by the following local automaton.
Shift conjugacy

Block map
Given A, B alphabets and X shift over A. $\Phi : A^\mathbb{Z} \to B^\mathbb{Z}$ is a block map if there are non-negative integers m, a and a function $\phi : A^{m+1+a} \to B$ such that for any $x \in X$ and any i

$$\Phi(x)_i = \phi(x_{i-m} \cdots x_{i+a}).$$

Analogously can be defined for one-sided shifts, setting $a = 0$.

Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map $\Phi : X \to Y$. Note: the inverse is also block map.
Shift conjugacy

Block map
Given A, B alphabets and X shift over A. $\Phi : A^\mathbb{Z} \to B^\mathbb{Z}$ is a block map if there are non-negative integers m, a and a function $\phi : A^{m+1+a} \to B$ such that for any $x \in X$ and any i

$$\Phi(x)_i = \phi(x_{i-m} \cdots x_{i+a}).$$

Analogously can be defined for one-sided shifts, setting $a = 0$.

Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map $\Phi : X \to Y$.
Note: the inverse is also block map.
Shift conjugacy

Block map

Given A, B alphabets and X shift over A. $\Phi : A^\mathbb{Z} \to B^\mathbb{Z}$ is a block map if there are non-negative integers m, a and a function $\phi : A^{m+1+a} \to B$ such that for any $x \in X$ and any i

$$\Phi(x)_i = \phi(x_{i-m} \cdots x_{i+a}).$$

Analogously can be defined for one-sided shifts, setting $a = 0$.

Conjugacy

Two shifts X, Y are conjugate if there is a bijective block map $\Phi : X \to Y$.

Note: the inverse is also block map.
Shift conjugacy

Block map
Given A, B alphabets and X shift over A. $\Phi : A^\mathbb{Z} \to B^\mathbb{Z}$ is a block map if there are non-negative integers m, a and a function $\phi : A^{m+1+a} \to B$ such that for any $x \in X$ and any i

$$\Phi(x)_i = \phi(x_{i-m} \cdots x_{i+a}).$$

Analogously can be defined for one-sided shifts, setting $a = 0$.

Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map $\Phi : X \to Y$.
Note: the inverse is also block map.
Shift conjugacy

Block map
Given A, B alphabets and X shift over A. $\Phi : A^\mathbb{Z} \to B^\mathbb{Z}$ is a block map if there are non-negative integers m, a and a function $\phi : A^{m+1+a} \to B$ such that for any $x \in X$ and any i

$$\Phi(x)_i = \phi(x_{i-m} \cdots x_{i+a}).$$

Analogously can be defined for one-sided shifts, setting $a = 0$.

Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map $\Phi : X \to Y$.
Note: the inverse is also block map.
Outline

Standard notions
 Shifts (of finite type)
 Conjugacy

1-sided finite-type-Dyck shifts
 Dyck shifts
 Finite-type-Dyck shifts

Conjugacy for 1-sided FTD shifts
 Deciding conjugacy
Dyck shifts consist of well-formed sequences of brackets.

E.g.

```
⋯))))((()())())⋯

⋯]](()[()]())⋯
```

NOT

```
⋯]](()[[]()())⋯
```

Similar rules can be introduced for any SFT defined on an alphabet of brackets.
Dyck shifts consist of well-formed sequences of brackets.

E.g.

\[
\cdots))((()))()()\cdots \\
\cdots]](()[[()]()\cdots \\
\]

NOT

\[
\cdots]](()[[()]()\cdots \\
\]

Similar rules can be introduced for any SFT defined on an alphabet of brackets.
Dyck shifts consist of well-formed sequences of brackets.

E.g.

\[
\cdots) (((())) \cdots
\]

\[
\cdots] [((])] () \cdots
\]

NOT

\[
\cdots] [([))] () \cdots
\]

Similar rules can be introduced for any SFT defined on an alphabet of brackets.
Dyck shifts consist of well-formed sequences of brackets.

E.g.
\[
\cdots))((())(()))\cdots
\]
\[
\cdots][(()][()])\cdots
\]

NOT
\[
\cdots][(()][]())\cdots
\]

Similar rules can be introduced for any SFT defined on an alphabet of brackets.
Tripartitioned alphabet

Let the alphabet be divided into three disjoint sets of *call*, *return*, and *internal* symbols:

\[A = A_c \sqcup A_r \sqcup A_i. \]

Example

Consider the SFT defined by the automaton, where \(A_c = \{ (, [\} \), \(A_r = \{)$, $] \}, \) \(A_d = \{ j, k \} \)
Tripartitioned alphabet

Let the alphabet be divided into three disjoint sets of call, return, and internal symbols:

\[A = A_c \sqcup A_r \sqcup A_i. \]

Example

Consider the SFT defined by the automaton, where \(A_c = \{ (, [\} \), \(A_r = \{),] \} \), \(A_d = \{ j, k \} \).
Let’s add Dyck constraints. Prevent

\[\cdots (\left[kjkj \right]) kj(\cdots \]

from appearing in the shift...

The SFT already avoids some finite set of forbidden factors \(F \). So why not also forbid matching the pairs from the set \(U = \{ \langle (, \rangle, \langle [, \rangle \} \}. \)
Let’s add Dyck constraints. Prevent

\[\cdots ([kjk] jk (\cdots \]

from appearing in the shift...

The SFT already avoids some finite set of forbidden factors \(F \). So why not also forbid matching the pairs from the set \(U = \{ \langle , [\rangle, \langle [, \rangle \} \).
Let’s add Dyck constraints. Prevent

\[\cdots (([kjkj]]) kj ((\cdots \]

from appearing in the shift...

The SFT already avoids some finite set of forbidden factors F. So why not also forbid matching the pairs from the set $U = \{ \langle (,] \rangle, \langle [,) \rangle \}$.
Let’s add Dyck constraints. Prevent

\[\cdots (\langle[[kj]k]\rangle)kj(\cdots \]

from appearing in the shift...

The SFT already avoids some finite set of forbidden factors \(F \). So why not also forbid matching the pairs from the set \(U = \{\langle(,]\rangle, \langle[,\rangle\rangle\} \). We can record the same information in the automaton by joining edges whose symbols are allowed to match.
But we could (dis)allow any other combination of call and return symbols. Consider

![Diagram]

corresponding to forbidden matching $U = \{ \langle (,] \rangle \}$. We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by k. Hence distinguishing

$$\cdots)jk((jk))(\cdots$$

from

$$\cdots)))((jk))(\cdots$$
But we could (dis)allow any other combination of call and return symbols. Consider

\[
\begin{array}{c}
\text{corresponding to forbidden matching } U = \{ \langle (, [) \rangle \}. \\
\end{array}
\]

We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by \(k\). Hence distinguishing

\[
\cdots jk((jk))\cdots
\]

from

\[
\cdots)))(jk))\cdots
\]
But we could (dis)allow any other combination of call and return symbols. Consider

\[
\begin{align*}
\text{corresponding to forbidden matching } & U = \{ \langle (,] \rangle \}. \\
\text{We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by } & k. \text{ Hence distinguishing} \\
\cdots & jk((jk))(\cdots
\end{align*}
\]

from

\[
\cdots)))(((jk))(\cdots
\]
But we could (dis)allow any other combination of call and return symbols. Consider

corresponding to forbidden matching $U = \{ \langle(,] \rangle \}$. We can also consider context. For example we may allow brackets matching only if at least one of them is preceded by k. Hence distinguishing

$\cdots)j(k ((jk)) (\cdots$

from

$\cdots)))(((jk)) (\cdots$
1-sided finite-type-Dyck shift

We call *1-sided finite-type-Dyck shift* over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^m A_c \times A^m A_r$ for some non-negative integer m. We denote $X = X_{F,U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.
1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^m A_c \times A^m A_r$ for some non-negative integer m. We denote $X = X_{F,U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.
1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^m A_c \times A^m A_r$ for some non-negative integer m. We denote $X = X_{F,U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.
1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^mA_c \times A^mA_r$ for some non-negative integer m. We denote $X = X_{F,U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.
1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^m A_c \times A^m A_r$ for some non-negative integer m. We denote $X = X_{F,U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT's are included.
- The language of factors is a visibly pushdown language.
1-sided finite-type-Dyck shift

We call 1-sided finite-type-Dyck shift over alphabet A any set $X \subseteq A^{-\mathbb{N}}$ that avoids some finite set of forbidden words $F \subseteq A^{m+1}$ and finite set of matching patterns $U \subseteq A^m A_c \times A^m A_r$ for some non-negative integer m. We denote $X = X_{F,U}$.

Some notes:

- Equivalently, 1-sided FTD shifts can be defined as left-infinite paths admissible in local automata with arbitrary matching relations between call and return edges. So-called Dyck automata.
- By construction, both (1-sided) Dyck shifts and SFT’s are included.
- The language of factors is a visibly pushdown language.
Outline

Standard notions
 Shifts (of finite type)
 Conjugacy

1-sided finite-type-Dyck shifts
 Dyck shifts
 Finite-type-Dyck shifts

Conjugacy for 1-sided FTD shifts
 Deciding conjugacy
Proper block map
A block map Φ is proper when $\Phi(x)_j \in A_c$ (resp. A_r, A_i) if and only if $x_j \in A_c$ (resp. A_r, A_i).

Matched-return word
A word over tripartitioned alphabet A is matched-return if it ”has no unmatched return symbols”. Formally, if each its prefix contains at least as many call symbols as return symbols.

MR-extensible shift
A shift X is called MR-extensible if for any of its blocks, u exists a non-empty matched-return word v such that uv is a block of X.
Proper block map
A block map Φ is *proper* when $\Phi(x)_j \in A_c$ (resp. A_r, A_i) if and only if $x_j \in A_c$ (resp. A_r, A_i).

Matched-return word
A word over tripartitioned alphabet A is *matched-return* if it ”has no unmatched return symbols”. Formally, if each its prefix contains at least as many call symbols as return symbols.

MR-extensible shift
A shift X is called *MR-extensible* if for any of its blocks, u exists a non-empty matched-return word v such that uv is a block of X.
Proper block map
A block map Φ is proper when $\Phi(x)_j \in A_c$ (resp. A_r, A_i) if and only if $x_j \in A_c$ (resp. A_r, A_i).

Matched-return word
A word over tripartitioned alphabet A is matched-return if it "has no unmatched return symbols". Formally, if each its prefix contains at least as many call symbols as return symbols.

MR-extensible shift
A shift X is called MR-extensible if for any of its blocks, u exists a non-empty matched-return word v such that uv is a block of X.
Proper block map
A block map \(\Phi \) is *proper* when \(\Phi(x)_j \in A_c \) (resp. \(A_r, A_i \)) if and only if \(x_j \in A_c \) (resp. \(A_r, A_i \)).

Matched-return word
A word over tripartitioned alphabet \(A \) is *matched-return* if it "has no unmatched return symbols". Formally, if each its prefix contains at least as many call symbols as return symbols.

MR-extensible shift
A shift \(X \) is called *MR-extensible* if for any of its blocks, \(u \) exists a non-empty matched-return word \(v \) such that \(uv \) is a block of \(X \).
The result

Theorem
It is decidable in an effective way whether two one-sided finite-type-Dyck shifts which are MR-extensible are properly conjugate.

- Not all 1-sided FTD shifts are MR-extensible, but many are.
- Dyck and Motzkin shifts are MR-extensible.
- Our examples were MR-extensible.
The result

Theorem
It is decidable in an effective way whether two one-sided finite-type-Dyck shifts which are MR-extensible are properly conjugate.

- Not all 1-sided FTD shifts are MR-extensible, but many are.
- Dyck and Motzkin shifts are MR-extensible.
- Our examples were MR-extensible.
Deciding the conjugacy

In the process of deciding, the operations of *in-splitting* and *in-merging* Dyck graphs (multigraph with matching of some edges) are crucial.
Deciding the conjugacy

During the in-splitting a state is divided into two. Each new state receives a precise copy of its out-going edges (including the matching relations. The original in-coming edges are partitioned between the two new states.
Deciding the conjugacy

During the in-splitting a state is divided into two. Each new state receives a precise copy of its out-going edges (including the matching relations). The original in-coming edges are partitioned between the two new states.
Deciding the conjugacy

During the in-splitting a state is divided into two. Each new state receives a precise copy of its out-going edges (including the matching relations. The original in-coming edges are partitioned between the two new states.
Deciding the conjugacy

To decide conjugacy of two 1-sided FTD’S given by finite sets $F \subseteq A^{m+1}, U \subseteq A^m A_c \times A^m A_r$:

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)
Deciding the conjugacy

To decide conjugacy of two 1-sided FTD’S given by finite sets $F \subseteq A^{m+1}, U \subseteq A^m A_c \times A^m A_r$:

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)
Deciding the conjugacy

To decide conjugacy of two 1-sided FTD’s given by finite sets $F \subseteq A^{m+1}$, $U \subseteq A^m A_c \times A^m A_r$:

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)
Deciding the conjugacy

To decide conjugacy of two 1-sided FTD’S given by finite sets \(F \subseteq A^{m+1}, U \subseteq A^m A_c \times A^m A_r \):

- construct from \(F, U \), automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)
Deciding the conjugacy

To decide conjugacy of two 1-sided FTD’S given by finite sets $F \subseteq A^{m+1}$, $U \subseteq A^m A_c \times A^m A_r$:

- construct from F, U, automaton of certain form recognizing the shift
- from now on disregard labels, work only with the underlying Dyck graph
- perform in-merges in the two graphs as long as possible
- check, whether they are isomorphic (in the Dyck graph sense, i.e. respecting the edge matching)