Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] 00000
[e] 00000

Deciding conjugacy for certain class of one-sided
finite-type-Dyck shifts

Pavel Heller, joint work with Marie-Pierre Béal

RDMath IdF

;. UNIVERSITE
PARIS-EST
MARNE-LA-VALLEE

¥ fledeFrance

9 April 2015

Journées SDA 2 du GDR IM
Université Paris-Est Marne-la-Vallée

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] 00000
[e] 00000

Deciding conjugacy for certain class of one-sided
finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] 00000
[e] 00000

Deciding conjugacy for certain class of one-sided
finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

e decidable for 1-sided SFT's [Williams, 73]
e unknown for 1-sided sofic shifts
e unknown for 2-sided SFT's

Standard notions 1-sided finite-type-Dyck shifts
[e]e]e}
[e]

Conjugacy for 1-sided FTD shifts

[e] 00000
00000

Deciding conjugacy for certain class of one-sided
finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

e decidable for 1-sided SFT's [Williams, 73]
e unknown for 1-sided sofic shifts
e unknown for 2-sided SFT's

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima,
2013]

Standard notions 1-sided finite-type-Dyck shifts

Conjugacy for 1-sided FTD shifts
000
o

[e] 00000
00000

Deciding conjugacy for certain class of one-sided
finite-type-Dyck shifts

Deciding shift conjugacy: generally open problem

e decidable for 1-sided SFT's [Williams, 73]
e unknown for 1-sided sofic shifts
e unknown for 2-sided SFT's

Our focus: (1-sided) finite-type-Dyck shifts. [Béal, Blockelet, Dima,
2013]

We present an extension of Williams' result.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FT

[e]e]e} 00000
[e]

[e]
00000

Outline

Standard notions
Shifts (of finite type)
Conjugacy

1-sided finite-type-Dyck shifts
Dyck shifts
Finite-type-Dyck shifts

Conjugacy for 1-sided FTD shifts
Deciding conjugacy

D shifts

Standard notions 1-sided finite-type-Dyck shifts

[e]e]e} [e]
[e] 00000

Outline

Standard notions
Shifts (of finite type)
Conjugacy

Conjugacy for 1-sided FTD shifts
00000

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
®00 o 00000

Shifts

A finite alphabet
A* set of finite words over A

A” set of bi-infinite sequences over A

A~N set left-infinite sequences over A

Standard notions
@00

Shifts

A finite alphabet
A* set of finite words over A

A” set of bi-infinite sequences over A

A~N set left-infinite sequences over A

Shift
X C A% (resp. A™N) is called a (one-sided) shift if it is the set of
sequences avoiding some set of forbidden words F C A*.

Standard notions
@00

Shifts

A finite alphabet
A* set of finite words over A

A” set of bi-infinite sequences over A

A~N set left-infinite sequences over A

Shift

X C A% (resp. A™N) is called a (one-sided) shift if it is the set of
sequences avoiding some set of forbidden words F C A*. We denote
X = Xg.

Standard notions
@00

Shifts

A finite alphabet
A* set of finite words over A

A” set of bi-infinite sequences over A

A~N set left-infinite sequences over A

Shift

X C A% (resp. A™N) is called a (one-sided) shift if it is the set of
sequences avoiding some set of forbidden words F C A*. We denote
X = Xg.

X is equipped with a shift map and topology.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

oeo [e] 00000
[e] 00000

Sofic shift

X = Xg where F is regular is called a sofic shift.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
oceo o 00000
o 00000

Sofic shift

X = Xg where F is regular is called a sofic shift.

Shift of finite type
X = Xg where F is finite is called a shift of finite type.

Standard notions finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

ceo

Sofic shift

X = Xg where F is regular is called a sofic shift.

Shift of finite type
X = Xg where F is finite is called a shift of finite type.

A sofic shift can be represented by a finite automaton; a SFT by a local
finite automaton.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

ooe [e] 00000
[e] 00000

Example: shift of finite type
Let A= {a, b,c}. Consider Xg for F = {ba, bb, ac, cc}. Represented by
the following local automaton.

Shift conjugacy

Block map

Given A, B alphabets and X shift over A. ¢ : AZ — B% is a block map if
there are non-negative integers m, a and a function ¢ : A2 — B such
that for any x € X and any |

(x)i = A(Ximm - Xita) -
Analougously can be defined for one-sided shifts, setting a = 0.

Conjugacy

Two shifts X, Y are conjugate if there is a bijective block map
P X—=Y.

Note: the inverse is also block map.

«Or «Fr o«

it
it
it
N)
b
?

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
00000

000 [e]
° 00000

Shift conjugacy

Block map
Given A, B alphabets and X shift over A. & : AZ — B% is a block map if
there are non-negative integers m, a and a function ¢ : A™t1+2 — B such

that for any x € X and any i

d finite-type-Dyck shifts or 1-sided FTD shifts

Standard notions

Shift conjugacy

Block map
Given A, B alphabets and X shift over A. & : AZ — B% is a block map if
there are non-negative integers m, a and a function ¢ : A™t1+2 — B such

that for any x € X and any i
S(x)i = G(Xi—m "~ Xita) -

Analougously can be defined for one-sided shifts, setting a = 0.

Standard notions or 1-sided FTD shifts

Shift conjugacy

Block map

Given A, B alphabets and X shift over A. & : AZ — B% is a block map if
there are non-negative integers m, a and a function ¢ : A™t1+2 — B such
that for any x € X and any i

P(x)i = ¢(Xi—m "~ Xita) -
Analougously can be defined for one-sided shifts, setting a = 0.

Conjugacy
Two shifts X, Y are conjugate if there is a bijective block map
d: X =Y.

Standard notions or 1-sided FTD shifts

Shift conjugacy

Block map

Given A, B alphabets and X shift over A. & : AZ — B% is a block map if
there are non-negative integers m, a and a function ¢ : A™t1+2 — B such
that for any x € X and any i

P(x)i = ¢(Xi—m "~ Xita) -
Analougously can be defined for one-sided shifts, setting a = 0.

Conjugacy

Two shifts X, Y are conjugate if there is a bijective block map
d: X =Y.

Note: the inverse is also block map.

Standard notions 1-sided finite-type-Dyck shifts

[e]e]e} [e]
[e] 00000

Outline

1-sided finite-type-Dyck shifts
Dyck shifts
Finite-type-Dyck shifts

Conjugacy for 1-sided FTD shifts
00000

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} o 00000
[e] 00000

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} o 00000
[e] 00000

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.

E.g.

1-sided finite-type-Dyck shifts C
[] 00000
00000

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.
E.g.

NOT

onjugacy for

1-sided FTD shifts

Standard notions 1-sided finite-type-Dyck shifts

Dyck shifts

Dyck shifts consist of well-formed sequences of brackets.

E.g.
- (000)0))
J1COTOT0))
NOT
IO 0)) -+

Similar rules can be introduced for any SFT defined on an alphabet of
brackets.

or 1-sided FTD shifts

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] 00000
[e] @0000

Tripartitioned alphabet

Let the alphabet be divided into three disjoint sets of call, return, and
internal symbols:
A=A UA UA;.

Standard notions 1-sided finite-type-Dyck shifts Cc or 1-sided FTD shifts

0000

Tripartitioned alphabet

Let the alphabet be divided into three disjoint sets of call, return, and
internal symbols:

A=A UA LA .

Example

Consider the SFT defined by the automaton, where Ac = { (,[},
Ar={), 1}, Aa={j, k}

Let's add Dyck constraints. Prevent

- ([kK] TRiC(C -
from appearing in the shift...

The SFT already avoids some finite set of forbiden factors F. So why not
also forbid matching the pairs from the set U= {{(,]).([,))}

«O>r «Fr <

it
v
a
it

DA

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
000

o]
0@000

Let’s add Dyck constraints. Prevent

- (([hiki T ki (-

from appearing in the shift...

1-sided finite-type-Dyck shifts

0@000

Let’s add Dyck constraints. Prevent
- (([kiki]Tki((-
from appearing in the shift...

The SFT already avoids some finite set of forbiden factors F. So why not
also forbid matching the pairs from the set U= { ((,]).([,)) }.

1-sided finite-type-Dyck shifts

00800

Let's add Dyck constraints. Prevent

- ((Thiki 1T RI(C -
from appearing in the shift...

The SFT already avoids some finite set of forbiden factors F. So why not
also forbid matching the pairs from the set U = { < (,]> ,< [,)> }

We can record the same information in the automaton by joining edges
whose symbols are allowed to match.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
[e]e]e} [e] 00000
[e] [e]e]e] e}
But we could (dis)allow any other combination of call and return
symbols.

1-sided finite-type-Dyck shifts

[e]e]e] e}

But we could (dis)allow any other combination of call and return
symbols. Consider

corresponding to forbidden matching U = { <(,]> }

1-sided finite-type-Dyck shifts

[e]e]e] e}

But we could (dis)allow any other combination of call and return
symbols. Consider

corresponding to forbidden matching U = { <(,]> }

We can also consider context. For example we may allow brackets
matching only if at least one of them is preceded by k. Hence
distinguishing

KK

1-sided finite-type-Dyck shifts

[e]e]e] e}

But we could (dis)allow any other combination of call and return
symbols. Consider

corresponding to forbidden matching U = { <(,]> }

We can also consider context. For example we may allow brackets
matching only if at least one of them is preceded by k. Hence
distinguishing

KK
from

=)NCUK))G

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
coo 0O ... 0000cC

o]
[e]e]ele] }

1-sided finite-type-Dyck shift

We call I-sided finite-type-Dyck shift over alphabet A any set X C A~N
that avoids some finite set of forbidden words F C A™*1 and finite set of
matching patterns U C A" A, x ATA, for some non-negative integer m.

Standard notions 1-sided finite-type-Dyck shifts Cc or 1-sided FTD shifts

0000e

1-sided finite-type-Dyck shift

We call I-sided finite-type-Dyck shift over alphabet A any set X C A~N
that avoids some finite set of forbidden words F C A™*1 and finite set of
matching patterns U C A" A, x ATA, for some non-negative integer m.
We denote X = XF y.

Standard notions 1-sided finite-type-Dyck shifts Cc or 1-sided FTD shifts

0000e

1-sided finite-type-Dyck shift

We call I-sided finite-type-Dyck shift over alphabet A any set X C A~N
that avoids some finite set of forbidden words F C A™*1 and finite set of
matching patterns U C A" A, x ATA, for some non-negative integer m.
We denote X = XF y.

Some notes:

1-sided finite-type-Dyck shifts

[e]e]ele] }

1-sided finite-type-Dyck shift

We call I-sided finite-type-Dyck shift over alphabet A any set X C A~N
that avoids some finite set of forbidden words F C A™*1 and finite set of
matching patterns U C A" A, x ATA, for some non-negative integer m.
We denote X = XF y.

Some notes:

e Equivalently, 1-sided FTD shifts can be defined as left-infinite paths
admissible in local automata with arbitrary matching relations
between call and return edges.

1-sided finite-type-Dyck shifts

[e]e]ele] }

1-sided finite-type-Dyck shift

We call I-sided finite-type-Dyck shift over alphabet A any set X C A~N
that avoids some finite set of forbidden words F C A™*1 and finite set of
matching patterns U C A" A, x ATA, for some non-negative integer m.
We denote X = XF y.

Some notes:

e Equivalently, 1-sided FTD shifts can be defined as left-infinite paths
admissible in local automata with arbitrary matching relations
between call and return edges. So-called Dyck automata.

1-sided finite-type-Dyck shifts

[e]e]ele] }

1-sided finite-type-Dyck shift

We call I-sided finite-type-Dyck shift over alphabet A any set X C A~N
that avoids some finite set of forbidden words F C A™*1 and finite set of
matching patterns U C A" A, x ATA, for some non-negative integer m.
We denote X = XF y.

Some notes:

e Equivalently, 1-sided FTD shifts can be defined as left-infinite paths
admissible in local automata with arbitrary matching relations
between call and return edges. So-called Dyck automata.

e By construction, both (1-sided) Dyck shifts and SFT's are included.

e The language of factors is a visibly pushdown language.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] 00000
[e] 00000

Outline

Conjugacy for 1-sided FTD shifts
Deciding conjugacy

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] @0000
[e] 00000

Proper block map

A block map & is proper when Phi(x); € Ac (resp. Ay, A;) if and only if
xj € Ac (resp. A, Aj).

Conjugacy for 1-sided FTD shifts
@0000

finite-type-Dyck shifts

Proper block map
A block map & is proper when Phi(x); € Ac (resp. Ay, A;) if and only if
xj € Ac (resp. A, Aj).

Matched-return word
A word over tripartitioned alphabet A is matched-return if it "has no

unmatched return symbols”.

Conjugacy for 1-sided FTD shifts
@0000

Standard notions 1-sided finite-type-Dyck shifts

Proper block map
A block map & is proper when Phi(x); € Ac (resp. Ay, A;) if and only if
xj € Ac (resp. A, Aj).

Matched-return word

A word over tripartitioned alphabet A is matched-return if it "has no
unmatched return symbols”. Formally, if each its prefix contains at least
as many call symbols as return symbols.

Standard notions

nite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
@0000

Proper block map

A block map & is proper when Phi(x); € Ac (resp. Ay, A;) if and only if
xj € Ac (resp. A, Aj).

Matched-return word

A word over tripartitioned alphabet A is matched-return if it "has no
unmatched return symbols”. Formally, if each its prefix contains at least
as many call symbols as return symbols.

MR-extensible shift
A shift X is called MR-extensible if for any of its blocks, u exists a
non-empty matched-return word v such that uv is a block of X.

Standard notions 1
[e]e]e}

nite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
0e000

The result

Theorem
It is decidable in an effective way whether two one-sided finite-type-Dyck
shifts which are MR-extensible are properly conjugate.

Conjugacy for 1-sided FTD shifts
0@000

The result

Theorem
It is decidable in an effective way whether two one-sided finite-type-Dyck
shifts which are MR-extensible are properly conjugate.

e Not all 1-sided FTD shifts are MR-extensible, but many are.
e Dyck and Motzkin shifts are MR-extensible.

e QOur examples were MR-extensible.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] 00e00
[e] 00000

Deciding the conjugacy

In the process of deciding, the operations of in-splitting and in-merging
Dyck graphs (multigraph with matching of some edges) are crucial.

er, €5

€6
€3’
e €4

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
00000

[e]e]e} [e]
[e] 00000

Deciding the conjugacy

er, €5

€3> 6

During the in-splitting a state is divided into two.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
00000

[e]e]e} [e]
[e] 00000

Deciding the conjugacy

er, €5

€3> 6

During the in-splitting a state is divided into two.
Each new state receives a precise copy of its out-going edges (including
the matching relations.

1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
00000

Standard notions

[e]e]e} [e]
[e] 00000

Deciding the conjugacy

er, €5

€3> 6

During the in-splitting a state is divided into two.
Each new state receives a precise copy of its out-going edges (including

the matching relations.
The original in-coming edges are partitioned between the two_new states.

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] [e]e]e]e] }
[e] 00000

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets
FCA™L UC ATA. x ATA,:

Standard notions 1-sided finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts

[e]e]e} [e] [e]e]e]e] }
[e] 00000

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets
FCA™L UC ATA. x ATA,:

e construct from F, U, automaton of certain form recognizing the shift

Standard notions

d finite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
[e]e]e]e]]

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets
FCA™L UC ATA. x ATA,:
e construct from F, U, automaton of certain form recognizing the shift

e from now on disregard labels, work only with the underlying Dyck
graph

nite-type-Dyck shifts Conjugacy for 1-sided FTD shifts
[e]e]e]e]]

Standard notions

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets
FCA™L UCAmA. x ATA,:
e construct from F, U, automaton of certain form recognizing the shift
e from now on disregard labels, work only with the underlying Dyck
graph
e perform in-merges in the two graphs as long as possible

Conjugacy for 1-sided FTD shifts
[e]e]e]e] }

Deciding the conjugacy

To decide conjugacy of two 1-sided FTD'S given by finite sets
FCA™L UCAmA. x ATA,:
e construct from F, U, automaton of certain form recognizing the shift
e from now on disregard labels, work only with the underlying Dyck
graph
e perform in-merges in the two graphs as long as possible

e check, whether they are isomorphic (in the Dyck graph sense, i.e.
respecting the edge matching)

	Standard notions
	Shifts (of finite type)
	Conjugacy

	1-sided finite-type-Dyck shifts
	Dyck shifts
	Finite-type-Dyck shifts

	Conjugacy for 1-sided FTD shifts
	Deciding conjugacy

