Aperiodic Tilings on Groups

E. Jeandel

LORIA (Nancy, France)

Introduce tilings (SFTs) on groups

Find computational obstructions to the existence of aperiodic tilings

• If there is a tiling, there is a periodic one

- Related to finite automata theory
- If there is a tiling, there is a periodic one

How to define tilings on a group ?

How to define periodicity on a group ?

Cayley graph of a group G with generators a, b

- Vertices are elements of G
- Edge from g to ga labelled by a.
- Edge from g to gb labelled by b.

Cayley graph for \mathbb{Z} , with a = 1

Cayley graph for \mathbb{Z} , with a = 2, b = -3

Cayley graph for \mathbb{Z}^2

Cayley graph for the free group

The free group \mathbb{F}_2 with two generators *a* and *b*:

- All words on the alphabet {a, b, a⁻¹, b⁻¹} with no factors aa⁻¹, bb⁻¹, b⁻¹b, a⁻¹a
- Multiplication is concatenation then simplification.

A Wang tile on a group with two generators:

Given a set of Wang tiles, is there a tiling of the group ?

Given a set of Wang tiles, is there a periodic tiling ?

A tiling is a map $x : G \to W$ where W is the set of Wang tiles.

The translation of x by g is gx defined by

$$(gx)_h = x_{g^{-1}h}$$

x is periodic of period g if gx = x.

Example

Example

Example (free group)

Example (free group)

Periodic tiling (free group)

Periodic tiling (free group)

In noncommutative groups, counterintuitive things happen

If x is of period g, then hx is of period hgh^{-1}

Definition

A set of Wang tiles W is aperiodic if no tiling by W has a (nonzero) period.

(Not the classical definition, but easier for the talk)

On which group is it possible to have an aperiodic tileset ?

- Aperiodic tiling on \mathbb{Z}^2 (Berger 1964)
- Aperiodic tiling on Baumslag-Solitar groups (Aubrun-Kari 2013)
- Aperiodic tiling on the Heisenberg Group (Sahin-Schraudner 2014)
- Aperiodic tiling implies the group is one ended (Cohen 2014)

Theorem

If a f.p. group admits an aperiodic tileset, it has a decidable word problem

Let *G* be generated by *a* and *b*. The *word problem* is to decide, given a word over $\{a, b, a^{-1}, b^{-1}\}$, whether it corresponds to the identity element on *G*

A group is *finitely presented* if there exists a finite set of relations R so that G is the largest group satisfying the set of relations.

$$\mathbb{Z}^{2} = \langle a, b | ab = ba \rangle \mathbb{Z} = \langle a, b | b = 1 \rangle \mathbb{F}_{2} = \langle a, b | \rangle$$

- Let G be a group generated by a and b
- Let *F* be the free group.
- The free group has a universal property: the map φ from F to G that maps a to a and b to b is a morphism.

Intuitively, the free group is the largest group with two generators. All other groups have additional relations

- Any tiling by W on G is a tiling by W on \mathbb{F}_2 .
- We can "unfold" the Cayley graph/"unfold" the tiling.

Idea of the proof

Idea of the proof

- Any tiling by W on G is a tiling by W on \mathbb{F}_2 .
- Any tiling by W on \mathbb{F}_2 s.t.:

$$\phi(g) = \phi(h) \implies x_h = x_g$$

is a tiling on *G*. (ϕ is the morphism from \mathbb{F}_2 to *G*)

 If G is finitely presented there is an algorithm that can semidecide whether φ(g) = φ(h)

- Start from an aperiodic set W on G
- We want to decide the word problem. Equivalently, to decide, given g ∈ 𝔽₂, if φ(g) = 1.
- We can semidecide if $\phi(g) = 1$, so we should find an algorithm for $\phi(g) \neq 1$.
- Try to find a tiling x of \mathbb{F}_2 with the constraint that $x_{g^{-1}h} = x_h$ for all g.
 - If $\phi(g) = 1$ such a tiling exists
 - If $\phi(g) \neq 1$ there is no such tiling by aperiodicity
- This give a semidecision algorithm for $\phi(g) \neq 1$

Theorem

If a f.p. group admits an aperiodic tileset, it has a decidable word problem

Theorem

If a group admits an aperiodic tileset, then we can enumerate the complement of the word problem from the word problem

See my other talk at Paris-Est.

Try to find aperiodic tilesets for specific groups

Generalize a construction of Kari of an aperiodic tileset in \mathbb{Z}^2 .

The tileset simulates a piecewise affine map $f : [0, 1] \rightarrow [0, 1]$:

- Every row corresponds to a real $x \in [0, 1]$
- If row *i* corresponds to *x*, row i + 1 corresponds to f(x).
- Aperiodicity comes from the fact that *f* has no periodic points.

Let *G* be a group. Start from two piecewise affine maps f_a and f_b s.t.:

$$f_w(x) = x \iff w = 1$$

or

$$\forall g, f_{gw}(x) = f_g(x) \iff w = 1$$

Then the construction gives an aperiodic set of tiles for $G \times \mathbb{Z}$

Theorem

For a large class of groups G, closed under product, and that contains free groups, Thompson's groups T and V, and compact matrix groups $G \times \mathbb{Z}$ admits an aperiodic tileset.

Example - $PSL_2(\mathbb{Z})$

(Colors on a^{-1} and b^{-1} are identical and represented only once)

- Prove that every group admits an aperiodic subshift.
- Generalize Kari construction in the other direction.