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Goal of the talk

Introduce tilings (SFTs) on groups

Find computational obstructions to the existence of aperiodic tilings
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Tilings on Z
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Tilings on Z

Related to finite automata theory
If there is a tiling, there is a periodic one
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Tilings on Z2
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Tilings on Z2
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Tilings on a group

How to define tilings on a group ?

How to define periodicity on a group ?
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Cayley graph

Cayley graph of a group G with generators a,b
Vertices are elements of G
Edge from g to ga labelled by a.
Edge from g to gb labelled by b.
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Cayley graph for Z

Cayley graph for Z, with a = 1
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Cayley graph for Z

Cayley graph for Z, with a = 2,b = −3
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Cayley graph for Z2

a = (1,0), b = (0,1).
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Cayley graph for the free group

The free group F2 with two generators a and b:
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The free group

All words on the alphabet {a,b,a−1,b−1} with no factors
aa−1,bb−1,b−1b,a−1a
Multiplication is concatenation then simplification.
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Tilings on groups

A Wang tile on a group with two generators:
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Tilings on groups

Given a set of Wang tiles, is there a tiling of the group ?

Given a set of Wang tiles, is there a periodic tiling ?
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Periodicity

A tiling is a map x : G→W where W is the set of Wang tiles.

The translation of x by g is gx defined by

(gx)h = xg−1h

x is periodic of period g if gx = x .
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Example
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Example
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Example (free group)

E. Jeandel, Aperiodic Tilings on Groups 17/37



Example (free group)
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Periodic tiling (free group)
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Periodic tiling (free group)
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Beware

In noncommutative groups, counterintuitive things happen

If x is of period g, then hx is of period hgh−1
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Aperiodic tilings

Definition
A set of Wang tiles W is aperiodic if no tiling by W has a (nonzero)
period.

(Not the classical definition, but easier for the talk)

On which group is it possible to have an aperiodic tileset ?
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Previous work

Aperiodic tiling on Z2 (Berger 1964)
Aperiodic tiling on Baumslag-Solitar groups (Aubrun-Kari 2013)
Aperiodic tiling on the Heisenberg Group (Sahin-Schraudner
2014)
Aperiodic tiling implies the group is one ended (Cohen 2014)
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First theorem

Theorem
If a f.p. group admits an aperiodic tileset, it has a decidable word
problem
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Word problem

Let G be generated by a and b. The word problem is to decide, given a
word over {a,b,a−1,b−1}, whether it corresponds to the identity
element on G

A group is finitely presented if there exists a finite set of relations R so
that G is the largest group satisfying the set of relations.

Z2 = 〈a,b|ab = ba〉 Z = 〈a,b|b = 1〉 F2 = 〈a,b|〉
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Idea of the proof

Let G be a group generated by a and b
Let F be the free group.
The free group has a universal property: the map φ from F to G
that maps a to a and b to b is a morphism.

Intuitively, the free group is the largest group with two generators. All
other groups have additional relations
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Idea of the proof

Any tiling by W on G is a tiling by W on F2.
We can “unfold” the Cayley graph/“unfold” the tiling.
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Idea of the proof
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Idea of the proof
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Idea of the proof

Any tiling by W on G is a tiling by W on F2.
Any tiling by W on F2 s.t.:

φ(g) = φ(h) =⇒ xh = xg

is a tiling on G.
(φ is the morphism from F2 to G)
If G is finitely presented there is an algorithm that can semidecide
whether φ(g) = φ(h)
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Idea of the proof

Start from an aperiodic set W on G
We want to decide the word problem. Equivalently, to decide,
given g ∈ F2, if φ(g) = 1.
We can semidecide if φ(g) = 1, so we should find an algorithm for
φ(g) 6= 1.
Try to find a tiling x of F2 with the constraint that xg−1h = xh for all
g.

If φ(g) = 1 such a tiling exists
If φ(g) 6= 1 there is no such tiling by aperiodicity

This give a semidecision algorithm for φ(g) 6= 1
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First theorem - Enumeration version

Theorem
If a f.p. group admits an aperiodic tileset, it has a decidable word
problem

Theorem
If a group admits an aperiodic tileset, then we can enumerate the
complement of the word problem from the word problem

See my other talk at Paris-Est.
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Other results

Try to find aperiodic tilesets for specific groups
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The Kari tileset

Generalize a construction of Kari of an aperiodic tileset in Z2.

The tileset simulates a piecewise affine map f : [0,1]→ [0,1]:

Every row corresponds to a real x ∈ [0,1]
If row i corresponds to x , row i + 1 corresponds to f (x).
Aperiodicity comes from the fact that f has no periodic points.
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Generalizations

Let G be a group.
Start from two piecewise affine maps fa and fb s.t.:

fw (x) = x ⇐⇒ w = 1

or

∀g, fgw (x) = fg(x) ⇐⇒ w = 1

Then the construction gives an aperiodic set of tiles for G × Z
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Second theorem

Theorem
For a large class of groups G, closed under product, and that contains
free groups, Thompson’s groups T and V, and compact matrix groups
G × Z admits an aperiodic tileset.
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Example - PSL2(Z)
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(Colors on a−1 and b−1 are identical and represented only once)
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Open question

Prove that every group admits an aperiodic subshift.
Generalize Kari construction in the other direction.
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