Géométrie fractale, algorithmes, calculabilité

Timo Jolivet
En collaboration avec Jarkko Kari

Journées SDA2
Marne-la-Vallée
10 avril 2015

Iterated function systems (IFS)

Let $f_{1}, \ldots, f_{n}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be contracting maps.

Theorem (Hutchinson 1981)

There is a unique nonemtpy compact set $X \subseteq \mathbb{R}^{d}$ such that

$$
X=f_{1}(X) \cup \cdots \cup f_{n}(X) .
$$

- Definition of "fractal"

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0^{2}}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\left(\begin{array}{l}\left.{ }_{0}^{1 / 2}\right) \\ 0\end{array}\right.$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0^{2}}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0^{2}}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0^{2}}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0^{2}}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Example 1

- $f_{1}: x \mapsto \frac{1}{2} x$
- $f_{2}: x \mapsto \frac{1}{2} x+\binom{1 / 2}{0^{2}}$
- $f_{3}: x \mapsto \frac{1}{2} x+\binom{0}{1 / 2}$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \subseteq \mathbb{R}^{2}
$$

Self-affine sets

- Let $A \in \mathcal{M}_{d}(\mathbb{Z})$ be an expanding matrix (eigenvalues $\left|\lambda_{i}\right|>1$)
- Let $\mathcal{D} \subseteq \mathbb{Z}^{d}$ ("digits")

Self-affine sets

- Let $A \in \mathcal{M}_{d}(\mathbb{Z})$ be an expanding matrix (eigenvalues $\left|\lambda_{i}\right|>1$)
- Let $\mathcal{D} \subseteq \mathbb{Z}^{d}$ ("digits")

Theorem (Hutchinson 1981)

There is a unique nonempty compact $X \subseteq \mathbb{R}^{d}$ such that

$$
X=\bigcup_{d \in \mathcal{D}} A^{-1}(X+d)
$$

Self-affine sets

- Let $A \in \mathcal{M}_{d}(\mathbb{Z})$ be an expanding matrix (eigenvalues $\left|\lambda_{i}\right|>1$)
- Let $\mathcal{D} \subseteq \mathbb{Z}^{d}$ ("digits")

Theorem (Hutchinson 1981)

There is a unique nonempty compact $X \subseteq \mathbb{R}^{d}$ such that

$$
X=\bigcup_{d \in \mathcal{D}} A^{-1}(X+d)
$$

Very particular kind of IFS:

- Affine maps given by integers
- Common matrix for all maps

Example 0

- $A=(10)$
- $\mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$

Example 0

- $A=(10)$
- $\mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$
- $X=\bigcup_{d=0}^{9} \frac{1}{10}(X+d)$

Example 0

- $A=(10)$
- $\mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$
- $X=\bigcup_{d=0}^{9} \frac{1}{10}(X+d)$
- $X=[0,1] \quad$ (base 10 representation)

Example 0

- $A=(10)$
- $\mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$
- $X=\bigcup_{d=0}^{9} \frac{1}{10}(X+d)$
- $X=[0,1] \quad$ (base 10 representation)

Meaning of "digits":

$$
X=\left\{\sum_{k=1}^{\infty} A^{-k} d_{k}:\left(d_{k}\right)_{k \geqslant 1} \in \mathcal{D}^{\mathbb{N}}\right\}
$$

Example 1

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1}\right\}$

Example 1

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1}\right\}$

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X=X \cup\left(X+\binom{1}{0}\right) \cup\left(X+\binom{0}{1}\right)
$$

Sierpiński variant 1

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\}$

Sierpiński variant 1

$\begin{aligned} A & =\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) \\ \text { - } \mathcal{D} & =\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\}\end{aligned}$
1

Sierpiński variant 2

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}$

Sierpiński variant 2

- $\begin{aligned} A & =\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right) \\ \text { - } \mathcal{D} & =\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}\end{aligned}$

Sierpiński variant 2

- $\begin{aligned} A & =\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right) \\ \text { - } \mathcal{D} & =\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}\end{aligned}$

Sierpiński variant 2

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}$

Sierpiński variant 2

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}$

Sierpiński variant 2

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}$

Sierpiński variant 2

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}$

Sierpiński variant 2

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}$

Sierpiński variant 3

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}$

Sierpiński variant 3

$$
\begin{aligned}
& \text { - } A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}
\end{aligned}
$$

Sierpiński variant 3

$\begin{aligned} \text { - } A & =\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) \\ \text { - } \mathcal{D} & =\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}\end{aligned}$

Sierpiński variant 3

$$
\begin{aligned}
-A & =\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
\mathcal{D} & =\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}
\end{aligned}
$$

Sierpiński variant 3

$$
\begin{aligned}
& \text { - } A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \text { - } \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}
\end{aligned}
$$

Sierpiński variant 3

$$
\begin{aligned}
\text { - } A & =\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
\text { - } \mathcal{D} & =\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}
\end{aligned}
$$

Sierpiński variant 3

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}$

Sierpiński variant 3

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}$

Sierpiński variant 3

- $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
- $\mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{3}{1}\right\}$

Self-affine tiles

Definition

\mathcal{D} is a standard set of digits if:

- $|\mathcal{D}|=|\operatorname{det}(A)|$
- \mathcal{D} is a complete set of representatives in $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$.

Self-affine tiles

Definition

\mathcal{D} is a standard set of digits if:

- $|\mathcal{D}|=|\operatorname{det}(A)|$
- \mathcal{D} is a complete set of representatives in $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$.

In this case, X is a self-affine tile.

Self-affine tiles

Definition

\mathcal{D} is a standard set of digits if:

- $|\mathcal{D}|=|\operatorname{det}(A)|$
- \mathcal{D} is a complete set of representatives in $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$. In this case, X is a self-affine tile.

Theorem [Bandt, Lagarias-Wang]

Under these conditions:

- X has nonempty interior
- X is the closure of its interior
- $\mu(\partial X)=0$
- X tiles \mathbb{R}^{d} by translation

Self-affine tiles

Definition

\mathcal{D} is a standard set of digits if:

- $|\mathcal{D}|=|\operatorname{det}(A)|$
- \mathcal{D} is a complete set of representatives in $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$. In this case, X is a self-affine tile.

Theorem [Bandt, Lagarias-Wang]

Under these conditions:

- X has nonempty interior
- X is the closure of its interior
- $\mu(\partial X)=0$
- X tiles \mathbb{R}^{d} by translation
- Many good properties and algorithms

Nonstandard \mathcal{D}

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
\end{aligned}
$$

Nonstandard \mathcal{D}

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
\end{aligned}
$$

X has empty interior (why?)

Nonstandard \mathcal{D}

Indeed,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
$$

Nonstandard \mathcal{D}

Indeed,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
$$

so

$$
\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right) X=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X+\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\}
$$

Nonstandard \mathcal{D}

Indeed,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
$$

SO

$$
\begin{aligned}
\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right) X= & \left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X+\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\} \\
= & X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\} \\
& +\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\}
\end{aligned}
$$

Nonstandard \mathcal{D}

Indeed,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
$$

SO

$$
\begin{aligned}
\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right) X= & \left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X+\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\} \\
= & X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\} \\
& +\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\} \\
= & X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right. \\
& \binom{2}{0},\binom{3}{0},\binom{2}{1},\binom{3}{2} \\
& \binom{0}{2},\binom{1}{2},\binom{0}{3},\binom{1}{4} \\
& \left.\binom{2}{4},\binom{3}{4},\binom{2}{5},\binom{3}{6}\right\}
\end{aligned}
$$

Nonstandard \mathcal{D}

Indeed,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
$$

SO

$$
\begin{aligned}
&\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right) X=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X+\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\} \\
&=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\} \\
&+\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\} \\
&=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2},\right. \\
&\binom{2}{0},\binom{3}{0},\binom{2}{1},\binom{3}{2} \\
&\binom{0}{2},\binom{1}{2},\binom{0}{3},\binom{1}{4}, \\
&\left.\binom{2}{4},\binom{3}{4},\binom{2}{5},\binom{3}{6}\right\}
\end{aligned}
$$

so $16 \mu(X) \leqslant 15 \mu(X)$

Nonstandard \mathcal{D}

Indeed,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
$$

SO

$$
\begin{aligned}
&\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right) X=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) X+\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\} \\
&=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\} \\
&+\left\{\binom{0}{0},\binom{2}{0},\binom{0}{2},\binom{2}{4}\right\} \\
&=X+\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2},\right. \\
&\binom{2}{0},\binom{3}{0},\binom{2}{1},\binom{3}{2} \\
&\binom{0}{2},\binom{1}{2},\binom{0}{3},\binom{1}{4}, \\
&\left.\binom{2}{4},\binom{3}{4},\binom{2}{5},\binom{3}{6}\right\}
\end{aligned}
$$

so $16 \mu(X) \leqslant 15 \mu(X)$
so $\mu(X)=0$

Nonstandard \mathcal{D}

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
\end{aligned}
$$

X has empty interior

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{2},\binom{1}{2}\right\}
\end{aligned}
$$

Nonstandard \mathcal{D}

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{2}\right\}
\end{aligned}
$$

X has empty interior

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathcal{D}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{2},\binom{1}{2}\right\}
\end{aligned}
$$

Nonstandard \mathcal{D}

We like tiles and their good properties :
What conditions must we put on \mathcal{D} for X to have nonempty interior?

Nonstandard \mathcal{D}

We like tiles and their good properties :

What conditions must we put on \mathcal{D} for X to have nonempty interior?

- Nonempty interior $\Leftrightarrow \mu(X)>0 \Leftrightarrow\left\{\begin{array}{l}X=\operatorname{closure}\left(X^{o}\right) \\ \mu(\partial(X))=0\end{array}\right.$

Nonstandard \mathcal{D}

We like tiles and their good properties :

What conditions must we put on \mathcal{D} for X to have nonempty interior?

- Nonempty interior $\Leftrightarrow \mu(X)>0 \Leftrightarrow\left\{\begin{array}{l}X=\operatorname{closure}\left(X^{o}\right) \\ \mu(\partial(X))=0\end{array}\right.$
- Necessary condition $|\mathcal{D}| \geqslant|\operatorname{det}(A)|$

Nonstandard \mathcal{D}

We like tiles and their good properties :

What conditions must we put on \mathcal{D} for X to have nonempty interior?

- Nonempty interior $\Leftrightarrow \mu(X)>0 \Leftrightarrow\left\{\begin{array}{l}X=\operatorname{closure}\left(X^{o}\right) \\ \mu(\partial(X))=0\end{array}\right.$
- Necessary condition $|\mathcal{D}| \geqslant|\operatorname{det}(A)|$
- [Kenyon 1992]: If $A=(p)$ with p prime then: X is a tile iff $\mathcal{D}=|\operatorname{det}(A)|[$ Kenyon 1992]

Nonstandard \mathcal{D}

We like tiles and their good properties :

What conditions must we put on \mathcal{D} for X to have nonempty interior?

- Nonempty interior $\Leftrightarrow \mu(X)>0 \Leftrightarrow\left\{\begin{array}{l}X=\operatorname{closure}\left(X^{o}\right) \\ \mu(\partial(X))=0\end{array}\right.$
- Necessary condition $|\mathcal{D}| \geqslant|\operatorname{det}(A)|$
- [Kenyon 1992]: If $A=(p)$ with p prime then:

$$
X \text { is a tile iff } \mathcal{D}=|\operatorname{det}(A)|[\text { Kenyon 1992] }
$$

- [Lau-Rao 2003]: If $A=(p q)$, characterization in terms of "product-form sets"

Nonstandard \mathcal{D}

We like tiles and their good properties :

What conditions must we put on \mathcal{D} for X to have nonempty interior?

- Nonempty interior $\Leftrightarrow \mu(X)>0 \Leftrightarrow\left\{\begin{array}{l}X=\operatorname{closure}\left(X^{o}\right) \\ \mu(\partial(X))=0\end{array}\right.$
- Necessary condition $|\mathcal{D}| \geqslant|\operatorname{det}(A)|$
- [Kenyon 1992]: If $A=(p)$ with p prime then:

$$
X \text { is a tile iff } \mathcal{D}=|\operatorname{det}(A)|[\text { Kenyon 1992] }
$$

- [Lau-Rao 2003]: If $A=(p q)$, characterization in terms of "product-form sets"
- [Lagarias-Wang 1996]: Same as above with $p \mathbb{Z}^{d} \subsetneq A^{2}\left(\mathbb{Z}^{d}\right)$

Nonstandard \mathcal{D}

We like tiles and their good properties :

What conditions must we put on \mathcal{D} for X to have nonempty interior?

- Nonempty interior $\Leftrightarrow \mu(X)>0 \Leftrightarrow\left\{\begin{array}{l}X=\operatorname{closure}\left(X^{o}\right) \\ \mu(\partial(X))=0\end{array}\right.$
- Necessary condition $|\mathcal{D}| \geqslant|\operatorname{det}(A)|$
- [Kenyon 1992]: If $A=(p)$ with p prime then:

$$
X \text { is a tile iff } \mathcal{D}=|\operatorname{det}(A)|[\text { Kenyon 1992] }
$$

- [Lau-Rao 2003]: If $A=(p q)$, characterization in terms of "product-form sets"
- [Lagarias-Wang 1996]: Same as above with $p \mathbb{Z}^{d} \subsetneq A^{2}\left(\mathbb{Z}^{d}\right)$
- Several other works in this direction...

Nonstandard \mathcal{D}

We like tiles and their good properties :

What conditions must we put on \mathcal{D} for X to have nonempty interior?

- Nonempty interior $\Leftrightarrow \mu(X)>0 \Leftrightarrow\left\{\begin{array}{l}X=\operatorname{closure}\left(X^{o}\right) \\ \mu(\partial(X))=0\end{array}\right.$
- Necessary condition $|\mathcal{D}| \geqslant|\operatorname{det}(A)|$
- [Kenyon 1992]: If $A=(p)$ with p prime then:

$$
X \text { is a tile iff } \mathcal{D}=|\operatorname{det}(A)|[\text { Kenyon 1992] }
$$

- [Lau-Rao 2003]: If $A=(p q)$, characterization in terms of "product-form sets"
- [Lagarias-Wang 1996]: Same as above with $p \mathbb{Z}^{d} \subsetneq A^{2}\left(\mathbb{Z}^{d}\right)$
- Several other works in this direction...
- The real question: Is it decidable?

Beyond self-affine tiles: affine IFS

- Several contractions A_{1}, \ldots, A_{i} instead of just A
- Arbitrary affine mappings $f_{i}(x)=A_{i} x+v_{i}$

Beyond self-affine tiles: affine IFS

Beyond self-affine tiles: affine IFS

- Several contractions A_{1}, \ldots, A_{k} instead of just A
- Arbitrary affine mappings $f_{i}(x)=A_{i} x+v_{i}$

Beyond self-affine tiles: affine IFS

- Several contractions A_{1}, \ldots, A_{k} instead of just A
- Arbitrary affine mappings $f_{i}(x)=A_{i} x+v_{i}$
- Several sets X_{1}, \ldots, X_{n} instead of just X (Graph-IFS)

Graph-IFS (GIFS)

$$
\begin{aligned}
f_{1}(x) & =x / 2 \\
f_{2}(x) & =x / 2+\binom{1 / 2}{0} \\
f_{3}(x) & =x / 2+\binom{0}{1 / 2}
\end{aligned}
$$

$$
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X)
$$

Graph-IFS (GIFS)

$$
\begin{array}{ll}
f_{1}(x)=x / 2 & f_{4}(x)=x / 2+\binom{1 / 2}{1 / 2} \\
f_{2}(x)=x / 2+\binom{1 / 2}{0} & f_{5}(x)=x / 2+\binom{1 / 2}{3 / 4} \\
f_{3}(x)=x / 2+\binom{0}{1 / 2} & f_{6}(x)=x / 2+\binom{3 / 4}{3 / 4}
\end{array}
$$

$$
\left\{\begin{array}{l}
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \cup f_{4}(Y) \\
Y=f_{5}(Y) \cup f_{6}(X)
\end{array}\right.
$$

Graph-IFS (GIFS)

$$
\begin{array}{ll}
f_{1}(x)=x / 2 & f_{4}(x)=x / 2+\binom{1 / 2}{1 / 2} \\
f_{2}(x)=x / 2+\binom{1 / 2}{0} & f_{5}(x)=x / 2+\binom{1 / 2}{3 / 4} \\
f_{3}(x)=x / 2+\binom{0}{1 / 2} & f_{6}(x)=x / 2+\binom{3 / 4}{3 / 4}
\end{array}
$$

$$
\left\{\begin{array}{l}
X=f_{1}(X) \cup f_{2}(X) \cup f_{3}(X) \cup f_{4}(Y) \\
Y=f_{5}(Y) \cup f_{6}(X)
\end{array}\right.
$$

$$
f_{f_{3}}^{f_{1}} C_{f_{6}}^{f_{4}}
$$

Undecidability result

Theorem [J-Kari 2013]
For 2D affine GIFS with 3 states (with coefficients in \mathbb{Q}):

- $=[0,1]^{2}$ is undecidable
- empty interior is undecidable

Undecidability result

Theorem [J-Kari 2013]
For 2D affine GIFS with 3 states (with coefficients in \mathbb{Q}):

- $=[0,1]^{2}$ is undecidable
- empty interior is undecidable
- Also true with diagonal A_{i}

Undecidability result

Theorem [J-Kari 2013]
For 2D affine GIFS with 3 states (with coefficients in \mathbb{Q}):

- $=[0,1]^{2}$ is undecidable
- empty interior is undecidable
- Also true with diagonal A_{i}
- Computational tools: multi-tape automata

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :
000
11

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :
0001

110

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :

> 000101
> 11000

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :

> 000101000
> 1100011

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :

> 0001010001
> 11000110

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :

> 0001010001000
> 1100011011

Multi-tape automata

d-tape automaton:

- alphabet $\mathcal{A}=A_{1} \times \cdots \times A_{d}$
- states \mathcal{Q}
- transitions $\mathcal{Q} \times\left(A_{1}^{+} \times \cdots \times A_{d}^{+}\right) \rightarrow \mathcal{Q}$

$$
\begin{aligned}
\mathcal{A} & =\{0,1\} \times\{0,1\} \\
\mathcal{Q} & =\{X, Y\}
\end{aligned}
$$

Accepted infinite word starting from X :

$$
\begin{aligned}
& 0001010001000 \ldots \\
& 1100011011 \ldots
\end{aligned} \in \mathcal{A}^{\mathbb{N}}=(\{0,1\} \times\{0,1\})^{\mathbb{N}}
$$

Multi-tape automaton \longmapsto GIFS

Multi-tape automaton \longmapsto GIFS

$$
\begin{gathered}
u \mid v \\
\text { Transition } \\
\text { (tape alphabets } \left.A_{1}, A_{2}\right) \\
\text { Mapping } f\binom{x}{y}=\left(\begin{array}{cc}
\left|A_{1}\right|^{-|u|} & 0 \\
0 & \left|A_{2}\right|^{-|v|}
\end{array}\right)\binom{x}{y}+\binom{0 . u_{1} \ldots u_{|u|}}{0 . v_{1} \ldots v_{|v|}}
\end{gathered}
$$

Multi-tape automaton \longmapsto GIFS

Automaton:

Multi-tape automaton \longmapsto GIFS

(tape alphabets A_{1}, A_{2})

$$
\longmapsto \text { Mapping } f\binom{x}{y}=\left(\begin{array}{cc}
\left|A_{1}\right|^{|u|} & 0 \\
0 & \left|A_{2}\right|^{|v|} \mid
\end{array}\right)\binom{x}{y}+\binom{0 . u_{1} \ldots u_{|u|}}{0 . v_{1} \ldots v_{|v|}}
$$

Automaton:

Associated GIFS:

$$
\left(\begin{array}{cc}
1 / 4 & 0 \\
0 & 1 / 4
\end{array}\right)\binom{x}{y}+\binom{0.01}{0.00} \text { (}
$$

Multi-tape automaton \longmapsto GIFS

$$
\begin{aligned}
& \text { Transition } \overbrace{\bullet}^{u \mid v} \quad \begin{array}{c}
\text { (tape alphabets } A_{1}, A_{2} \text {) } \\
\longmapsto \text { Mapping } f\binom{x}{y}=\left(\begin{array}{cc}
\left|A_{1}\right|^{-|u|} & 0 \\
0 & \left|A_{2}\right|^{-|v|}
\end{array}\right)\binom{x}{y}+\binom{0 . u_{1} \ldots u_{|u|}}{0 . v_{1} \ldots v_{|v|}}
\end{array}
\end{aligned}
$$

Automaton	GIFS
states	fractal sets
edges	contracting mappings
\#tapes	dimension
alphabet A_{i}	base- $\left\|A_{i}\right\|$ representation on tape i

Multi-tape automaton \longmapsto GIFS

$\rightarrow \overbrace{0}^{1011 \mid 11}$

- $f\binom{x}{y}=\left(\begin{array}{cc}1 / 16 & 0 \\ 0 & 1 / 4\end{array}\right)\binom{0 . x_{1} x_{2} \ldots}{0 . y_{1} y_{2} \ldots}+\binom{0.1011}{0.11}$

Multi-tape automaton \longmapsto GIFS

1011|11

$\rightarrow \xrightarrow{\infty}$

$$
\begin{aligned}
f\binom{x}{y} & =\left(\begin{array}{cc}
1 / 16 & 0 \\
0 & 1 / 4
\end{array}\right)\binom{0 . x_{1} x_{2} \ldots}{0 . y_{1} y_{2} \ldots}+\binom{0.1011}{0.11} \\
& =\binom{0.0000 x_{1} x_{2} \ldots}{0.00 y_{1} y_{2} \ldots}+\binom{0.1011}{0.11}
\end{aligned}
$$

Multi-tape automaton \longmapsto GIFS

1011|11

$\rightarrow>$

$$
\begin{aligned}
\nabla f\binom{x}{y} & =\left(\begin{array}{cc}
1 / 16 & 0 \\
0 & 1 / 4
\end{array}\right)\binom{0 . x_{1} x_{2} \ldots}{0 . y_{1} y_{2} \ldots}+\binom{0.1011}{0.11} \\
& =\binom{0.0000 x_{1} x_{2} \cdots}{0.00 y_{1} y_{2} \ldots}+\binom{0.1011}{0.11} \\
& =\binom{0.1011 x_{1} x_{2} \ldots}{0.11 y_{1} y_{2} \ldots}
\end{aligned}
$$

Multi-tape automaton \longmapsto GIFS

1011|11

- \longrightarrow_{0}

$$
\begin{aligned}
f\binom{x}{y} & =\left(\begin{array}{cc}
1 / 16 & 0 \\
0 & 1 / 4
\end{array}\right)\binom{0 . x_{1} x_{2} \ldots}{0 . y_{1} y_{2} \ldots}+\binom{0.1011}{0.11} \\
& =\binom{0.0000 x_{1} x_{2} \ldots}{0.00 y_{1} y_{2} \ldots}+\binom{0.1011}{0.11} \\
& =\binom{0.1011 x_{1} x_{2} \ldots}{0.11 y_{1} y_{2} \ldots}
\end{aligned}
$$

Key correspondence

GIFS fractal associated with automaton \mathcal{M}

$$
\left\{\binom{0 . x_{1} x_{2} \ldots}{0 . y_{1} y_{2} \ldots} \in \mathbb{R}^{2}:\binom{x_{1} x_{2} \ldots}{y_{1} y_{2} \ldots} \text { accepted by } \mathcal{M}\right\}
$$

Multi-tape automaton \longmapsto GIFS

Example:

Automaton

$$
\frac{1}{2}\binom{x}{y}+\binom{0}{1 / 2}+\binom{0}{0}
$$

$$
=\left\{\binom{0 . x_{1} x_{2} \ldots}{0 . y_{1} y_{2} \ldots}:\left(x_{n}, y_{n}\right) \neq(1,1), \forall n \geqslant 1\right\}
$$

Multi-tape automaton \longmapsto GIFS

Example:

Multi-tape automaton \longleftrightarrow GIFS

Automaton	GIFS
states	fractal sets
edges	contracting mappings
\#tapes	dimension
alphabet A_{i}	base- $\left\|A_{i}\right\|$ representation on tape i

Multi-tape automaton \longleftrightarrow GIFS

Automaton	GIFS
states	fractal sets
edges	contracting mappings
\#tapes	dimension
alphabet A_{i}	base- $\left\|A_{i}\right\|$ representation on tape i

Languages properties	GIFS properties
\exists configurations with $=$ tapes	Intersects the diagonal [Dube]
Is universal	Is equal to $[0,1]^{d}$
Has universal prefixes	Has nonempty interior
$?$	Is connected
$?$	Is totally disconnected
Compute language entropy	Compute fractal dimension

Multi-tape automaton \longleftrightarrow GIFS

Theorem [Dube 1993]

It is undecidable if X intersects the diagonal.

Proof idea:

- $X \cap\{(x, x): x \in[0,1]\} \neq \varnothing$
\Longleftrightarrow Automaton accepts a word of the form $\binom{0 . x_{1} x_{2} \ldots}{0 . x_{1} x_{2} \ldots}$
- Reduce the Post-correspondence problem

Language universality \Longleftrightarrow nonempty interior

Fact 1: \mathcal{M} is universal $\Longleftrightarrow X=[0,1]^{d}$

Language universality \Longleftrightarrow nonempty interior

Fact 1: \mathcal{M} is universal $\Longleftrightarrow X=[0,1]^{d}$

- Example (universal): one state, transitions $0|0,0| 1,1|0,1| 1$

Language universality \Longleftrightarrow nonempty interior

Fact 1: \mathcal{M} is universal $\Longleftrightarrow X=[0,1]^{d}$

- Example (universal): one state, transitions $0|0,0| 1,1|0,1| 1$
- Example (not universal): one state, transitions $0|0,0| 1,1 \mid 0$

Language universality \Longleftrightarrow nonempty interior

Fact 1: \mathcal{M} is universal $\Longleftrightarrow X=[0,1]^{d}$

- Example (universal): one state, transitions $0|0,0| 1,1|0,1| 1$
- Example (not universal): one state, transitions $0|0,0| 1,1 \mid 0$

Fact 2: \mathcal{M} is prefix-universal $\Longleftrightarrow X$ has nonempty interior

Language universality \Longleftrightarrow nonempty interior

Fact 1: \mathcal{M} is universal $\Longleftrightarrow X=[0,1]^{d}$

- Example (universal): one state, transitions $0|0,0| 1,1|0,1| 1$
- Example (not universal): one state, transitions $0|0,0| 1,1 \mid 0$

Fact 2: \mathcal{M} is prefix-universal $\Longleftrightarrow X$ has nonempty interior

- Example (universal with prefix 1 but not universal): one state, transitions 1, 10, 00 (one-dimensional)

$$
\begin{aligned}
& f_{1}(x)=x / 2+1 / 2 \\
& f_{2}(x)=x / 4 \\
& f_{3}(x)=x / 4+1 / 2
\end{aligned}
$$

$11 \square$

Undecidability results

Theorem [J-Kari 2013]

For 3-state, 2-tape automata:

- universality is undecidable
- prefix-universality is undecidable

Corollary

For 2D affine GIFS with 3 states (with coefficients in \mathbb{Q}):

- $=[0,1]^{2}$ is undecidable
- empty interior is undecidable

Conclusion \& perspectives

Decidability of nonempty interior:

	IFS	2-state GIFS	$\geqslant 3$-state GIFS
dimension 1	$?$	$?$	$?$
dimension $\geqslant 2$	$?$	$?$	Undecidable

Conclusion \& perspectives

Decidability of nonempty interior:

	IFS	2-state GIFS	\geqslant 3-state GIFS
dimension 1	$?$	$?$	$?$
dimension $\geqslant 2$	$?$	$?$	Undecidable

- dimension 1: we need new tools

Conclusion \& perspectives

Decidability of nonempty interior:

	IFS	2-state GIFS	\geqslant 3-state GIFS
dimension 1	$?$	$?$	$?$
dimension $\geqslant 2$	$?$	$?$	Undecidable

- dimension 1: we need new tools
- Other topological properties ? (Connectedness, disklike, fractal dimension, ...)

Conclusion \& perspectives

Decidability of nonempty interior:

	IFS	2-state GIFS	\geqslant 3-state GIFS
dimension 1	$?$	$?$	$?$
dimension $\geqslant 2$	$?$	$?$	Undecidable

- dimension 1: we need new tools
- Other topological properties ? (Connectedness, disklike, fractal dimension, ...)
- Implications $\operatorname{dim}_{H}(x)=d \Rightarrow \mu(X)>0 \Rightarrow \operatorname{int}(X) \neq \varnothing$

Conclusion \& perspectives

Decidability of nonempty interior:

	IFS	2-state GIFS	\geqslant 3-state GIFS
dimension 1	$?$	$?$	$?$
dimension $\geqslant 2$	$?$	$?$	Undecidable

- dimension 1: we need new tools
- Other topological properties ? (Connectedness, disklike, fractal dimension, ...)
- Implications $\operatorname{dim}_{H}(x)=d \Rightarrow \mu(X)>0 \Rightarrow \operatorname{int}(X) \neq \varnothing$
- Case $A=k$ ld ; links with automatic sequences. (Presburger brute-forcing?)

Conclusion \& perspectives

Decidability of nonempty interior:

	IFS	2-state GIFS	\geqslant 3-state GIFS
dimension 1	$?$	$?$	$?$
dimension $\geqslant 2$	$?$	$?$	Undecidable

- dimension 1: we need new tools
- Other topological properties ? (Connectedness, disklike, fractal dimension, ...)
- Implications $\operatorname{dim}_{H}(x)=d \Rightarrow \mu(X)>0 \Rightarrow \operatorname{int}(X) \neq \varnothing$
- Case $A=k$ ld ; links with automatic sequences. (Presburger brute-forcing?)

References

- Lagarias, Wang, Self-affine tiles in \mathbb{R}^{n}, Adv. Math., 1996
- Wang, Self-affine tiles, in book Advances in wavelets, 1999 (great survey, available online)
- Lai, Lau, Rao, Spectral structure of digit sets of self-similar tiles on \mathbb{R}^{1}, Trans. Amer. Math. Soc., 2013
- Dube, Undecidable problems in fractal geometry, Complex Systems, 1993
- Jolivet, Kari, Undecidable properties of self-affine sets and multi-tape automata, MFCS 2014, arXiv:1401.0705

