Geometry and dynamics of reducible Pisot substitutions

Milton Minervino

LIAFA, Paris 7

April 9, 2015

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 3, \ 3 \mapsto 4, \ 4 \mapsto 5, \ 5 \mapsto 1$$
$$M_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad f(x)g(x) = (x^3 - x - 1)(x^2 - x + 1)$$

eta>1 dominant root of f(x) is **Pisot** ightarrow |eta'|<1 for each conjugate eta'

 σ is a **reducible unit Pisot** substitution.

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 3, \ 3 \mapsto 4, \ 4 \mapsto 5, \ 5 \mapsto 1$$
$$M_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad f(x)g(x) = (x^3 - x - 1)(x^2 - x + 1)$$

 $\beta>1$ dominant root of f(x) is $\textbf{Pisot}~\rightarrow~|\beta'|<1$ for each conjugate β'

σ is a reducible unit Pisot substitution.

 M_{σ} -invariant decomposition:

$$\mathbb{R}^5 = \mathbb{K}_\beta \oplus \mathbb{K}_n$$

 M_{σ} is hyperbolic on \mathbb{K}_{β} .

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 3, \ 3 \mapsto 4, \ 4 \mapsto 5, \ 5 \mapsto 1$$
$$M_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad f(x)g(x) = (x^3 - x - 1)(x^2 - x + 1)$$

 $\beta>1$ dominant root of f(x) is $\textbf{Pisot}~\rightarrow~|\beta'|<1$ for each conjugate β'

σ is a reducible unit Pisot substitution.

 M_{σ} -invariant decomposition:

$$\mathbb{R}^5 = \mathbb{K}_e \oplus \mathbb{K}_c \oplus \mathbb{K}_n$$

 M_{σ} is expanding, contracting on \mathbb{K}_{e} , resp. \mathbb{K}_{c} .

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 3, \ 3 \mapsto 4, \ 4 \mapsto 5, \ 5 \mapsto 1$$
$$M_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad f(x)g(x) = (x^3 - x - 1)(x^2 - x + 1)$$

 $\beta>1$ dominant root of f(x) is $\textbf{Pisot}~\rightarrow~|\beta'|<1$ for each conjugate β'

σ is a reducible unit Pisot substitution.

 M_{σ} -invariant decomposition:

 $\mathbb{R}^5 \cong \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{K}_n$

 M_{σ} is expanding, contracting on \mathbb{R} , resp. \mathbb{C} .

Substitutive system

For a primitive σ with fixed point \boldsymbol{u} consider

$$X_{\sigma} = \overline{\{S^k u : k \in \mathbb{Z}\}}$$

where S is the shift.

- (X_{σ}, S) is a subshift.
- (X_{σ}, S) is minimal, uniquely ergodic, with zero entropy.
- Pisot condition \Leftrightarrow (X_{σ}, S) not weakly mixing.

Q: Does it have pure discrete spectrum?

Rauzy fractals

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 3, \ 3 \mapsto 4, \ 4 \mapsto 5, \ 5 \mapsto 1$$

 $u = 1234511212312341234512345112 \cdots$

• Projection of vertices of a broken line.

$$\mathcal{R}(i) = \overline{\{\pi_c \mathbf{I}(p) : pi \text{ prefix of } u\}}$$

• Embedded beta numeration integers:

$$\sum_{k\geq 0} \delta_c(d_keta^k), \ (d_k)\leq_{ ext{lex}} (1)_eta$$

• GIFS directed by the prefix automaton of σ .

Domain exchange

Strong Coincidence Condition

For any $(i,j) \in \mathcal{A}^2$ there is $k \in \mathbb{N}$ such that $\sigma^k(i) \in p_1 a \mathcal{A}^*$ and $\sigma^k(j) \in p_2 a \mathcal{A}^*$ for some $a \in \mathcal{A}$ and words $p_1, p_2 \in \mathcal{A}^*$ with $I(p_1) = I(p_2)$.

If SCC holds then (X_{σ}, S) is measurably conjugate to a *domain exchange* (\mathcal{R}, E) defined a.e. by

$$E: \mathbf{x} \mapsto \mathbf{x} + \pi_c(\mathbf{e}_i), \text{ for } \mathbf{x} \in \mathcal{R}(i)$$

Periodic tilings

Having a periodic tiling by Rauzy fractals implies pure discrete spectrum. That's true for all irreducible Pisot beta-substitutions (e.g. Tribonacci)!

• $\mathbf{1}^{\perp}$ is the hyperplane orthogonal to $(1,\ldots,1)$

•
$$\Lambda = \sum_{i \in \mathcal{A}} \mathbb{Z}(\mathbf{e}_i - \mathbf{e}_1)$$

Periodic tilings

Having a periodic tiling by Rauzy fractals implies pure discrete spectrum. That's true for all irreducible Pisot beta-substitutions (e.g. Tribonacci)!

• $\mathbf{1}^{\perp}$ is the hyperplane orthogonal to $(1,\ldots,1)$

•
$$\Lambda = \sum_{i \in \mathcal{A}} \mathbb{Z}(\mathbf{e}_i - \mathbf{e}_1)$$

Existence of necessary and sufficient geometrical, combinatorial and arithmetical conditions to get tilings.

The Pisot Conjecture

Periodic tilings

But... unfortunately the Hokkaido Rauzy fractal does not tile periodically $\mathbb{C}!$

Broken lines

 $\mathsf{Reducible} \to \mathsf{linear} \; \mathsf{dependencies}$

$$\pi(\mathbf{e}_1) = \pi(\mathbf{e}_3) + \pi(\mathbf{e}_4),$$

 $\pi(\mathbf{e}_5) = \pi(\mathbf{e}_2) + \pi(\mathbf{e}_3).$

Combinatorially

$$\chi: 1\mapsto 34, 2\mapsto 2, 3\mapsto 3, 4\mapsto 4, 5\mapsto \ 32.$$

Broken lines

 $\mathsf{Reducible} \to \mathsf{linear} \; \mathsf{dependencies}$

 $\pi(\mathbf{e}_1) = \pi(\mathbf{e}_3) + \pi(\mathbf{e}_4),$ $\pi(\mathbf{e}_5) = \pi(\mathbf{e}_2) + \pi(\mathbf{e}_3).$

Combinatorially

 $\chi: 1\mapsto 34, 2\mapsto 2, 3\mapsto 3, 4\mapsto 4, 5\mapsto \ 32.$

Effect of χ on a fixed point:

1 23 4 5 1 1 2 1 23 3 4 23 4 323 4 3 4 23 4 23

In this process we converted the substitution into an irreducible one!

Project now the vertices of the new broken line...

Broken lines

Reducible \rightarrow linear dependencies

 $\pi(\mathbf{e}_1) = \pi(\mathbf{e}_3) + \pi(\mathbf{e}_4),$ $\pi(\mathbf{e}_5) = \pi(\mathbf{e}_2) + \pi(\mathbf{e}_3).$

Combinatorially

 $\chi: 1 \mapsto 34, 2 \mapsto 2, 3 \mapsto 3, 4 \mapsto 4, 5 \mapsto 32.$

Effect of χ on a fixed point:

1 23 4 5 1 1 2 1 23 3 4 23 4 323 4 3 4 23 4 23

In this process we converted the substitution into an irreducible one!

Project now the vertices of the new broken line...

Domain exchange

• (*R*, *E*) domain exchange on the original Hokkaido tile.

 $E: \mathcal{R}(i) \mapsto \mathcal{R}(i) + \pi_c(\mathbf{e}_i), \ i \in \mathcal{A}$

(*R̃*, *Ẽ*) is a *toral translation*, since it induces a periodic tiling of C mod Λ = π_c((**e**₄ - **e**₃)Z + (**e**₄ - **e**₂)Z).

 $\widetilde{E}: \widetilde{\mathcal{R}}(i) \mapsto \widetilde{\mathcal{R}}(i) + \pi_c(\mathbf{e}_i), \ i \in \{2, 3, 4\}$

• *E* is the *first return* of \tilde{E} on \mathcal{R} .

Codings of the domain exchange

Let $\Omega = \overline{\{S^k w : k \in \mathbb{N}\}}$, where $w = \chi(u)$ is the coded fixed point of σ .

We have the following commutative diagram:

 ϕ measure conjugation.

Codings of the domain exchange

Let $\Omega = \overline{\{S^k w : k \in \mathbb{N}\}}$, where $w = \chi(u)$ is the coded fixed point of σ .

We have the following commutative diagram:

 ϕ measure conjugation.

 \Rightarrow (X_{σ}, S, μ) is the first return of a toral translation.

Codings of the domain exchange

Let $\Omega = \overline{\{S^k w : k \in \mathbb{N}\}}$, where $w = \chi(u)$ is the coded fixed point of σ .

We have the following commutative diagram:

 ϕ measure conjugation.

 \Rightarrow (X_{σ} , S, μ) is the first return of a toral translation.

We can generalize what shown for the family of substitutions

 $\sigma_t: \ 1\mapsto 1^{t+1}2, \ 2\mapsto 3, \ 3\mapsto 4, \ 4\mapsto 1^t5, \ 5\mapsto 1$

Dual approach

(Arnoux, Ito 01) formalism for *irreducible* Pisot substitutions.

Action of the substitution on 1-dimensional faces \to broken line For $({\bf x},a)\in \mathbb{Z}^d\times \mathcal{A}$

$$\mathsf{E}_1(\sigma)(\mathsf{x}, \mathsf{a}) = \sum_{\sigma(\mathsf{a}) = \mathsf{pbs}} (M_\sigma \mathsf{x} + \mathsf{I}(\mathsf{p}), \mathsf{b})$$

Dual action on (d-1)-dimensional faces:

$$\mathsf{E}_1^*(\sigma)(\mathsf{x},\mathsf{a})^* = \sum_{\sigma(b)= extsf{pass}} (M_\sigma^{-1}(\mathsf{x}-\mathsf{I}(p)),b)^*$$

Dual approach

(Arnoux, Ito 01) formalism for *irreducible* Pisot substitutions.

Action of the substitution on 1-dimensional faces \to broken line For $(\mathbf{x}, a) \in \mathbb{Z}^d \times \mathcal{A}$

$$\mathsf{E}_1(\sigma)(\mathsf{x}, \mathsf{a}) = \sum_{\sigma(\mathsf{a}) = \mathsf{pbs}} (M_\sigma \mathsf{x} + \mathsf{I}(\mathsf{p}), \mathsf{b})$$

Dual action on (d-1)-dimensional faces:

$$\mathsf{E}_1^*(\sigma)(\mathsf{x},\mathsf{a})^* = \sum_{\sigma(b)= extsf{pass}} (M_\sigma^{-1}(\mathsf{x}-\mathsf{I}(p)),b)^*$$

Useful for:

- 1 generating Rauzy fractals as *Hausdorff limits*.
- **2** producing *stepped surfaces*.

$$\mathcal{R}(\mathbf{a}) = \lim_{k \to \infty} \pi_{\mathbf{c}} (M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k} (\mathbf{0}, \mathbf{a})^{*})$$

$$\mathcal{R}(a) = \lim_{k \to \infty} \pi_c (M^k_\sigma \, \mathbf{E}^*_1(\sigma)^k (\mathbf{0}, a)^*)$$

$$\mathcal{R}(\mathbf{a}) = \lim_{k \to \infty} \pi_{\mathbf{c}} (M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k} (\mathbf{0}, \mathbf{a})^{*})$$

$$\mathcal{R}(a) = \lim_{k \to \infty} \pi_c (M^k_\sigma \mathbf{E}^*_1(\sigma)^k (\mathbf{0}, a)^*)$$

$$\mathcal{R}(a) = \lim_{k o \infty} \pi_c(M^k_\sigma \operatorname{\mathsf{E}}^*_1(\sigma)^k(\mathbf{0},a)^*)$$

$$\mathcal{R}(a) = \lim_{k \to \infty} \pi_c (M^k_\sigma \mathbf{E}^*_1(\sigma)^k (\mathbf{0}, a)^*)$$

$$\mathcal{R}(a) = \lim_{k \to \infty} \pi_c (M^k_\sigma \mathbf{E}^*_1(\sigma)^k (\mathbf{0}, a)^*)$$

$$\mathcal{R}(a) = \lim_{k o \infty} \pi_c(M^k_\sigma \operatorname{\mathsf{E}}^*_1(\sigma)^k(\mathbf{0},a)^*)$$

$$\mathcal{R}(a) = \lim_{k o \infty} \pi_c(M^k_\sigma \operatorname{\mathsf{E}}^*_1(\sigma)^k(\mathbf{0},a)^*)$$

Stepped surfaces

Set of coloured points "near" \mathbb{K}_c :

$$\mathsf{\Gamma} = \{(\mathbf{x}, a) \in \mathbb{Z}^d \times \mathcal{A} : \mathbf{x} \in (\mathbb{K}_c)^{\geq}, \mathbf{x} - \mathbf{e}_a \in (\mathbb{K}_c)^{<}\}$$

Stepped surfaces

Set of coloured points "near" \mathbb{K}_c :

$$\Gamma = \{ (\mathbf{x}, \mathbf{a}) \in \mathbb{Z}^d \times \mathcal{A} : \mathbf{x} \in (\mathbb{K}_c)^{\geq}, \mathbf{x} - \mathbf{e}_{\mathbf{a}} \in (\mathbb{K}_c)^{<} \}$$

- $\mathbf{E}_1^*(\sigma)(\Gamma) = \Gamma \rightarrow$ self-replicating property (Kenyon).
- Aperiodic translation set (Delone set) for a self-replicating multiple tiling made of Rauzy fractals.
- Geometric representation as an arithmetic discrete model of the hyperplane K_c, whose projection is a polygonal tiling.

Higher dimensional dual maps

Reducible case:
$$| n = #A > d = deg(\beta) |$$
.

Higher dimensional dual maps

Reducible case: $| n = \#A > d = \deg(\beta) |$.

We want to work with (d-1)-dimensional faces! The dual map $\mathbf{E}^*_{n-d+1}(\sigma)$ will suit:

$$\mathbf{E}_{n-d+1}^{*}(\sigma)(\mathbf{x},\underline{a})^{*} = \sum_{\underline{b} \stackrel{\underline{p}}{\longrightarrow} \underline{a}} \left(M_{\sigma}^{-1}(\mathbf{x} - \mathbf{I}(\underline{p})), \underline{b} \right)^{*}$$

Higher dimensional dual maps

Reducible case: $n = \#A > d = \deg(\beta)$.

We want to work with (d-1)-dimensional faces! The dual map $\mathbf{E}^*_{n-d+1}(\sigma)$ will suit:

$$\mathbf{E}_{n-d+1}^{*}(\sigma)(\mathbf{x},\underline{a})^{*} = \sum_{\underline{b} \stackrel{\underline{p}}{\longrightarrow} \underline{a}} \left(M_{\sigma}^{-1}(\mathbf{x} - \mathbf{I}(\underline{p})), \underline{b} \right)^{*}$$

Remarks:

- $\mathbf{E}_{n-d+1}^{*}(\sigma)$ acts on $\binom{n}{n-d+1}$ oriented faces.
- If σ is irreducible n = d and $\mathbf{E}^*_{n-d+1}(\sigma) = \mathbf{E}^*_1(\sigma)$.
- E_k(σ) and E^{*}_k(σ) commute in general with boundary and coboundary operators (Sano, Arnoux, Ito 2001).
- Similar approach for the study of a free group automorphism associated with a complex Pisot root (Arnoux, Furukado, Harriss, Ito 2011).

- 1 Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

- Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\Gamma_{\mathcal{U}} := \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U}), \quad \mathcal{U} = \{(\mathbf{0}, 2 \land 3), (\mathbf{0}, 2 \land 4), (\mathbf{0}, 3 \land 4)\}.$$

- Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\Gamma_{\mathcal{U}} := \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U}), \quad \mathcal{U} = \{(\mathbf{0}, 2 \land 3), (\mathbf{0}, 2 \land 4), (\mathbf{0}, 3 \land 4)\}.$$

- Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\Gamma_{\mathcal{U}} := \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U}), \quad \mathcal{U} = \{(\mathbf{0}, 2 \land 3), (\mathbf{0}, 2 \land 4), (\mathbf{0}, 3 \land 4)\}.$$

- Geometric representation for stepped surfaces.
- **2** Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\Gamma_{\mathcal{U}} := \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U}), \quad \mathcal{U} = \{(\mathbf{0}, 2 \land 3), (\mathbf{0}, 2 \land 4), (\mathbf{0}, 3 \land 4)\}.$$

- Geometric representation for stepped surfaces.
- **2** Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\Gamma_{\mathcal{U}} := \bigcup_{k \geq 0} \mathbf{E}_3^*(\sigma)^{5k}(\mathcal{U}), \quad \mathcal{U} = \{(\mathbf{0}, 2 \land 3), (\mathbf{0}, 2 \land 4), (\mathbf{0}, 3 \land 4)\}.$$

- 1 Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- **2** Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- **2** Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- **2** Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

- 1 Geometric representation for stepped surfaces.
- 2 Hausdorff limit definition of renormalized patches of polygons.
- **3** Periodic (multiple) tiling.

$$\mathcal{R}(\underline{a}) + \pi_{c}(\mathbf{x}) = \lim_{k \to \infty} \pi_{c}(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*})$$

Strange examples

(Joint work with X. Bressaud and T. Jolivet)

The geometrical interpretation seems to get harder for these substitutions, not satisfying the strong coincidence condition:

$$\sigma: 1 \mapsto 14, 2 \mapsto 32, 3 \mapsto 21, 4 \mapsto 3$$

 $\operatorname{char}(M_{\sigma}) = (x-1)(x^3 - x^2 - x - 1)$

Strange examples

(Joint work with X. Bressaud and T. Jolivet)

The geometrical interpretation seems to get harder for these substitutions, not satisfying the strong coincidence condition:

$$\sigma: 1 \mapsto 213, 2 \mapsto 4, 3 \mapsto 5, 4 \mapsto 1, 5 \mapsto 21$$
$$char(M_{\sigma}) = (x^2 + x + 1)(x^3 - 2x^2 + x - 1)$$

Lifting in the neutral space

Projection: $\pi_{c,n} : \mathbb{R}^n \to \mathbb{K}_c \oplus \mathbb{K}_n$.

Lifting in the neutral space

Projection: $\pi_{c,n} : \mathbb{R}^n \to \mathbb{K}_c \oplus \mathbb{K}_n$.

Lifting in the neutral space

Projection: $\pi_{c,n} : \mathbb{R}^n \to \mathbb{K}_c \oplus \mathbb{K}_n$.

Criterion (depending on the prefix automaton of the substitution) to know whether we get only *finitely many* layers.

In this case $\,\rightarrow\,$ NEW strong coincidence condition.

Gluing together

Projecting down suitably we can glue the subtiles together...

Gluing together

Projecting down suitably we can glue the subtiles together...

Figure : Symbolic splitting associated with the irreducible substitution $\tau : 1 \mapsto 12, 2 \mapsto 32, 3 \mapsto 1.$

... and obtain the connection with an irreducible substitution.

Gluing together

Projecting down suitably we can glue the subtiles together...

Figure : Symbolic splitting associated with the irreducible substitution $\tau : 1 \mapsto 12, 2 \mapsto 32, 3 \mapsto 1.$

... and obtain the connection with an irreducible substitution.

Philosophy: Dynamically the reducible substitutive system behaves exactly as the irreducible one, after identifying some letters / changing projection. Technique: symbolic splitting.

Hokkaido again

Figure : Rauzy fractal of the Hokkaido substitution in $\mathbb{K}_c \oplus \mathbb{K}_n$. The points distribute with logarithmic growth on a two-dimensional lattice.

Hokkaido again

Thank you!

Figure : Rauzy fractal of the Hokkaido substitution in $\mathbb{K}_c \oplus \mathbb{K}_n$. The points distribute with logarithmic growth on a two-dimensional lattice.