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Reducible Pisot substitutions

Hokkaido substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1

Mσ =

(
1 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
, f (x)g(x) = (x3 − x − 1)(x2 − x + 1)

β > 1 dominant root of f (x) is Pisot → |β′| < 1 for each conjugate β′

σ is a reducible unit Pisot substitution.

Mσ-invariant decomposition:
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Substitution dynamical systems

Substitutive system
For a primitive σ with fixed point u consider

Xσ = {Sku : k ∈ Z}

where S is the shift.

• (Xσ,S) is a subshift.

• (Xσ,S) is minimal, uniquely ergodic, with zero entropy.

• Pisot condition ⇔ (Xσ,S) not weakly mixing.

Q: Does it have pure discrete spectrum?



Rauzy fractals

σ : 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1

u = 1234511212312341234512345112 · · ·

• Projection of vertices of a
broken line.

1 23 4 5 1 1 2 1 23

R(i) = {πc l(p) : pi prefix of u}

• Embedded beta numeration
integers:∑
k≥0

δc(dkβ
k), (dk) ≤lex (1)β

• GIFS directed by the prefix
automaton of σ.



Domain exchange

Strong Coincidence Condition
For any (i , j) ∈ A2 there is k ∈ N such that σk(i) ∈ p1aA∗ and
σk(j) ∈ p2aA∗ for some a ∈ A and words p1, p2 ∈ A∗ with l(p1) = l(p2).

If SCC holds then (Xσ,S) is measurably conjugate to a domain exchange
(R,E ) defined a.e. by

E : x 7→ x + πc(ei ), for x ∈ R(i)



Periodic tilings

Having a periodic tiling by Rauzy fractals implies pure discrete spectrum.
That’s true for all irreducible Pisot beta-substitutions (e.g. Tribonacci)!

Xσ
∼= //

S

��

R
∼= //

E

��

1⊥/Λ

E

��
Xσ // R // 1⊥/Λ

• 1⊥ is the hyperplane orthogonal to (1, . . . , 1)

• Λ =
∑

i∈A Z(ei − e1)

Existence of necessary and sufficient geometrical, combinatorial and
arithmetical conditions to get tilings.

The Pisot Conjecture
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Periodic tilings

But. . . unfortunately the Hokkaido Rauzy fractal does not tile
periodically C!



Broken lines

Reducible → linear dependencies

π(e1) = π(e3) + π(e4),

π(e5) = π(e2) + π(e3).

Combinatorially

χ : 1 7→ 34, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 32.

Effect of χ on a fixed point:

1 23 4 5 1 1 2 1 2 3

3 4 23 4 3 2 3 34 4 3 42 2 3

In this process we converted the
substitution into an irreducible one!

Project now the vertices of the new
broken line. . .
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Domain exchange

• (R,E ) domain exchange on the
original Hokkaido tile.

E : R(i) 7→ R(i) + πc(ei ), i ∈ A

• (R̃, Ẽ ) is a toral translation, since it
induces a periodic tiling of C mod
Λ = πc((e4 − e3)Z + (e4 − e2)Z).

Ẽ : R̃(i) 7→ R̃(i) + πc(ei ), i ∈ {2, 3, 4}

• E is the first return of Ẽ on R.



Codings of the domain exchange

Let Ω = {Skw : k ∈ N}, where w = χ(u) is the coded fixed point of σ.

We have the following commutative diagram:

Xσ
χ //

S

��

Ω
φ //

S

��

R̃ //

Ẽ
��

C/Λ

Ẽ

��
Xσ

χ // Ω
φ // R̃ // C/Λ

φ measure conjugation.

⇒ (Xσ,S , µ) is the first return of a toral translation.

We can generalize what shown for the family of substitutions

σt : 1 7→ 1t+12, 2 7→ 3, 3 7→ 4, 4 7→ 1t5, 5 7→ 1
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Dual approach

(Arnoux, Ito 01) formalism for irreducible Pisot substitutions.

Action of the substitution on 1-dimensional faces → broken line
For (x, a) ∈ Zd ×A

E1(σ)(x, a) =
∑

σ(a)=pbs

(Mσx + l(p), b)

Dual action on (d − 1)-dimensional faces:

E∗1(σ)(x, a)∗ =
∑

σ(b)=pas

(M−1σ (x− l(p)), b)∗

Useful for:

1 generating Rauzy fractals as Hausdorff limits.

2 producing stepped surfaces.
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Hausdorff limits

R(a) = lim
k→∞

πc(Mk
σ E
∗
1(σ)k(0, a)∗)
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Stepped surfaces

Set of coloured points “near” Kc :

Γ = {(x, a) ∈ Zd ×A : x ∈ (Kc)≥, x− ea ∈ (Kc)<}

• E∗1(σ)(Γ) = Γ → self-replicating property (Kenyon).

• Aperiodic translation set (Delone set) for a self-replicating multiple
tiling made of Rauzy fractals.

• Geometric representation as an arithmetic discrete model of the
hyperplane Kc , whose projection is a polygonal tiling.
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Higher dimensional dual maps

Reducible case: n = #A > d = deg(β) .

We want to work with (d − 1)-dimensional faces! The dual map
E∗n−d+1(σ) will suit:

E∗n−d+1(σ)(x, a)∗ =
∑
b

p
−→a

(
M−1σ (x− l(p)), b

)∗
Remarks:

• E∗n−d+1(σ) acts on
(

n
n−d+1

)
oriented faces.

• If σ is irreducible n = d and E∗n−d+1(σ) = E∗1(σ).

• Ek(σ) and E∗k(σ) commute in general with boundary and
coboundary operators (Sano, Arnoux, Ito 2001).

• Similar approach for the study of a free group automorphism
associated with a complex Pisot root
(Arnoux, Furukado, Harriss, Ito 2011).
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Strange examples

(Joint work with X. Bressaud and T. Jolivet)

The geometrical interpretation seems to get harder for these
substitutions, not satisfying the strong coincidence condition:

σ : 1 7→ 14, 2 7→ 32, 3 7→ 21, 4 7→ 3

char(Mσ) = (x − 1)(x3 − x2 − x − 1)
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Lifting in the neutral space

Projection: πc,n : Rn → Kc ⊕Kn.

Criterion (depending on the prefix automaton of the substitution) to
know whether we get only finitely many layers.

In this case → NEW strong coincidence condition.
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Gluing together

Projecting down suitably we can glue the subtiles together. . .

Figure : Symbolic splitting associated with the irreducible substitution
τ : 1 7→ 12, 2 7→ 32, 3 7→ 1.

. . . and obtain the connection with an irreducible substitution.

Philosophy: Dynamically the reducible substitutive system behaves
exactly as the irreducible one, after identifying some letters / changing
projection. Technique: symbolic splitting.
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Hokkaido again

Thank you!

Figure : Rauzy fractal of the Hokkaido substitution in Kc ⊕Kn. The points
distribute with logarithmic growth on a two-dimensional lattice.
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