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Substitution dynamical systems

Substitutive system
For a primitive o with fixed point u consider

X, ={Sku: ke Z}
where S is the shift.

o (X,,S) is a subshift.
e (X,,S) is minimal, uniquely ergodic, with zero entropy.
e Pisot condition < (X,,S) not weakly mixing.

Q: Does it have pure discrete spectrum?



Rauzy fractals

c0:1—12, 2—3,3—4,4—5 5—1
u = 1234511212312341234512345112 - - -

e Projection of vertices of a
broken line.

12345 1 12123

[ Ty SRR )

R(i) = {mcl(p) : pi prefix of u}

e Embedded beta numeration
integers:

Zac(dkﬂk)’ (dk) lex (1)5

k>0

o GIFS directed by the prefix
automaton of o.



Domain exchange

Strong Coincidence Condition

For any (i,j) € A? there is k € N such that o*(i) € p;aA* and
ok (j) € paaA* for some a € A and words p1, p» € A* with I(p1) = I(p2).

If SCC holds then (X, S) is measurably conjugate to a domain exchange
(R, E) defined a.e. by

E:x— x+mn(e), forxeR(i)




Periodic tilings

Having a periodic tiling by Rauzy fractals implies pure discrete spectrum.
That's true for all irreducible Pisot beta-substitutions (e.g. Tribonacci)!
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Periodic tilings

Having a periodic tiling by Rauzy fractals implies pure discrete spectrum.
That's true for all irreducible Pisot beta-substitutions (e.g. Tribonacci)!
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e 11 is the hyperplane orthogonal to (1,...,
A=Y Zle )

Existence of necessary and sufficient geometrical, combinatorial and
arithmetical conditions to get tilings.
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The Pisot Conjecture



Periodic tilings

But... unfortunately the Hokkaido Rauzy fractal does not tile
periodically C!
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Broken lines

Reducible — linear dependencies

m(e1) = w(e3) + w(es),
m(es) = m(e2) + w(es3).

Combinatorially

x:1—34,2— 23— 34— 45— 32.



Reducible — linear dependencies
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In this process we converted the
substitution into an irreducible one!

Project now the vertices of the new
broken line. ..
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Domain exchange

e (R, E) domain exchange on the
original Hokkaido tile.

E:R(i)— R(i)+7c(e;), i€ A

° (ﬁ, E) is a toral translation, since it
induces a periodic tiling of C mod
A= 7TC((E4 — 93)Z + (e4 — ez)Z).

E:R(i) = R(i) +7eles), i € {2,3,4}

o E is the first return of E on R.




Codings of the domain exchange

Let Q = {Skw : k € N}, where w = x(u) is the coded fixed point of o.

We have the following commutative diagram:

X, 0o R C/A
si sl El EJ/
X, Xs0-2.R C/A

¢ measure conjugation.
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Codings of the domain exchange

Let Q = {Skw : k € N}, where w = x(u) is the coded fixed point of o.

We have the following commutative diagram:

X, 0o R C/A
si sl El EJ/
X, Xs0-2.R C/A

¢ measure conjugation.

= (Xo, S, i) is the first return of a toral translation.

We can generalize what shown for the family of substitutions

o 11712, 253 354, 4515, 551



Dual approach

(Arnoux, Ito 01) formalism for irreducible Pisot substitutions.

Action of the substitution on 1-dimensional faces — broken line
For (x,a) € Z¢ x A

El(O')(X, a) = Z (MJX + I(p)v b)

o(a)=pbs

Dual action on (d — 1)-dimensional faces:

Ei(0)(x,a) = D (M, (x—1(p)). b)"

o(b)=pas



Dual approach

(Arnoux, Ito 01) formalism for irreducible Pisot substitutions.

Action of the substitution on 1-dimensional faces — broken line
For (x,a) € Z¢ x A

Ei(0)(x,0) = > (Mox+1(p),b)
o(a)=pbs
Dual action on (d — 1)-dimensional faces:
Ei(0)(x,a) = D (M, (x—1(p)). b)"
o(b)=pas

Useful for:
@ generating Rauzy fractals as Hausdorff limits.
® producing stepped surfaces.



Hausdorff limits
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Hausdorff limits

R(a) = lim 7e(MEE;(0)4(0,2)")




Hausdorff limits

R(a) = lim mc(M; E{()*(0,2)")




Stepped surfaces

Set of coloured points “near” K.:

M={(xa) €z x A:xe (K> x—e, € (K)}



Stepped surfaces

Set of coloured points “near” K.:
Fr={(x,a) €29 x A:xe (K)Z,x —e, € (K)<}

e Ef(0)(l) =T — self-replicating property (Kenyon).

e Aperiodic translation set (Delone set) for a self-replicating multiple
tiling made of Rauzy fractals.

e Geometric representation as an arithmetic discrete model of the
hyperplane K., whose projection is a polygonal tiling.




Higher dimensional dual maps

Reducible case: | n = #.A > d = deg(p) ‘




Higher dimensional dual maps

Reducible case: ’ n=#A>d=deg(p) ‘

We want to work with (d — 1)-dimensional faces! The dual map
E; . 1(0) will suit:

rea1(0)(x,2)" = D (M (x = 1(p)), b)"

P
b—a



Higher dimensional dual maps

Reducible case: ’ n=#A>d=deg(p) ‘

We want to work with (d — 1)-dimensional faces! The dual map
E; . 1(0) will suit:

rea1(0)(x,2)" = D (M (x = 1(p)), b)"

P
b—a

Remarks:
e Er_,..(0)actson (n—Z+1) oriented faces.
e If o is irreducible n = d and E;_, (o) = Ej(0).
e E/(0) and E}(c) commute in general with boundary and
coboundary operators (Sano, Arnoux, Ito 2001).

e Similar approach for the study of a free group automorphism
associated with a complex Pisot root
(Arnoux, Furukado, Harriss, Ito 2011).



Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
@ Geometric representation for stepped surfaces.
® Hausdorff limit definition of renormalized patches of polygons.

® Periodic (multiple) tiling.
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Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
@ Geometric representation for stepped surfaces.
® Hausdorff limit definition of renormalized patches of polygons.
@© Periodic (multiple) tiling.

R(a) + me(x) = Jim me(MEE;_ 41 (0)(x,2)°)




Strange examples

(Joint work with X. Bressaud and T. Jolivet)

The geometrical interpretation seems to get harder for these
substitutions, not satisfying the strong coincidence condition:

c:1—142+—32,3—21,4—3
char(M,) = (x — 1)(x® = x* —x — 1)




Strange examples

(Joint work with X. Bressaud and T. Jolivet)

The geometrical interpretation seems to get harder for these
substitutions, not satisfying the strong coincidence condition:

0:1+5213,2+54,3155,4151,5 21
char(M,) = (x> + x + 1)(x* = 2x® + x — 1)
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Lifting in the neutral space

Projection: 7., :R" = K. ® K,.

Criterion (depending on the prefix automaton of the substitution) to
know whether we get only finitely many layers.

In this case — NEW strong coincidence condition.



Gluing together

Projecting down suitably we can glue the subtiles together. . .
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...and obtain the connection with an irreducible substitution.



Gluing together

Projecting down suitably we can glue the subtiles together. . .

Figure : Symbolic splitting associated with the irreducible substitution
7:1— 12,2+ 32,3 1.

...and obtain the connection with an irreducible substitution.

Philosophy: Dynamically the reducible substitutive system behaves
exactly as the irreducible one, after identifying some letters / changing
projection. Technique: symbolic splitting.



Hokkaido again

oy 92 > e
g P ARG e,

- - C .
a2 = e R PR
Moy v_n’»r,‘}un.'.‘:m": R

. -
ta e efmme T L B e

Figure : Rauzy fractal of the Hokkaido substitution in K. & K,. The points
distribute with logarithmic growth on a two-dimensional lattice.



Hokkaido again
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Figure : Rauzy fractal of the Hokkaido substitution in K. & K,. The points
distribute with logarithmic growth on a two-dimensional lattice.



