# Geometry and dynamics of reducible Pisot substitutions 

Milton Minervino

LIAFA, Paris 7

April 9, 2015

## Reducible Pisot substitutions

Hokkaido substitution

$$
\begin{gathered}
\sigma: 1 \mapsto 12,2 \mapsto 3,3 \mapsto 4,4 \mapsto 5,5 \mapsto 1 \\
M_{\sigma}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad f(x) g(x)=\left(x^{3}-x-1\right)\left(x^{2}-x+1\right)
\end{gathered}
$$

$\beta>1$ dominant root of $f(x)$ is Pisot $\rightarrow\left|\beta^{\prime}\right|<1$ for each conjugate $\beta^{\prime}$ $\sigma$ is a reducible unit Pisot substitution.

## Reducible Pisot substitutions

Hokkaido substitution

$$
\begin{gathered}
\sigma: 1 \mapsto 12,2 \mapsto 3,3 \mapsto 4,4 \mapsto 5,5 \mapsto 1 \\
M_{\sigma}=\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right) 1 \\
1
\end{gathered} 0
$$

$\beta>1$ dominant root of $f(x)$ is Pisot $\rightarrow\left|\beta^{\prime}\right|<1$ for each conjugate $\beta^{\prime}$ $\sigma$ is a reducible unit Pisot substitution.
$M_{\sigma}$-invariant decomposition:

$$
\mathbb{R}^{5}=\mathbb{K}_{\beta} \oplus \mathbb{K}_{n}
$$

$M_{\sigma}$ is hyperbolic on $\mathbb{K}_{\beta}$.

## Reducible Pisot substitutions

Hokkaido substitution

$$
\begin{gathered}
\sigma: 1 \mapsto 12,2 \mapsto 3,3 \mapsto 4,4 \mapsto 5,5 \mapsto 1 \\
M_{\sigma}=\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right) 1 \\
1
\end{gathered} 0
$$

$\beta>1$ dominant root of $f(x)$ is Pisot $\rightarrow\left|\beta^{\prime}\right|<1$ for each conjugate $\beta^{\prime}$ $\sigma$ is a reducible unit Pisot substitution.
$M_{\sigma}$-invariant decomposition:

$$
\mathbb{R}^{5}=\mathbb{K}_{e} \oplus \mathbb{K}_{c} \oplus \mathbb{K}_{n}
$$

$M_{\sigma}$ is expanding, contracting on $\mathbb{K}_{e}$, resp. $\mathbb{K}_{c}$.

## Reducible Pisot substitutions

Hokkaido substitution

$$
\begin{gathered}
\sigma: 1 \mapsto 12,2 \mapsto 3,3 \mapsto 4,4 \mapsto 5,5 \mapsto 1 \\
M_{\sigma}=\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right) 1 \\
1
\end{gathered} 0
$$

$\beta>1$ dominant root of $f(x)$ is Pisot $\rightarrow\left|\beta^{\prime}\right|<1$ for each conjugate $\beta^{\prime}$ $\sigma$ is a reducible unit Pisot substitution.
$M_{\sigma}$-invariant decomposition:

$$
\mathbb{R}^{5} \cong \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{K}_{n}
$$

$M_{\sigma}$ is expanding, contracting on $\mathbb{R}$, resp. $\mathbb{C}$.

## Substitution dynamical systems

## Substitutive system

For a primitive $\sigma$ with fixed point $u$ consider

$$
X_{\sigma}=\overline{\left\{S^{k} u: k \in \mathbb{Z}\right\}}
$$

where $S$ is the shift.

- $\left(X_{\sigma}, S\right)$ is a subshift.
- $\left(X_{\sigma}, S\right)$ is minimal, uniquely ergodic, with zero entropy.
- Pisot condition $\Leftrightarrow\left(X_{\sigma}, S\right)$ not weakly mixing.

Q: Does it have pure discrete spectrum?

## Rauzy fractals

$$
\begin{gathered}
\sigma: 1 \mapsto 12,2 \mapsto 3,3 \mapsto 4,4 \mapsto 5,5 \mapsto 1 \\
u=1234511212312341234512345112 \cdots
\end{gathered}
$$

- Projection of vertices of a broken line.

$$
12345112123
$$

$$
\mathcal{R}(i)=\overline{\left\{\pi_{c} \mathbf{I}(p): \text { pi prefix of } u\right\}}
$$

- Embedded beta numeration integers:

$$
\sum_{k \geq 0} \delta_{c}\left(d_{k} \beta^{k}\right),\left(d_{k}\right) \leq_{\operatorname{lex}}(1)_{\beta}
$$

- GIFS directed by the prefix automaton of $\sigma$.


## Domain exchange

## Strong Coincidence Condition

For any $(i, j) \in \mathcal{A}^{2}$ there is $k \in \mathbb{N}$ such that $\sigma^{k}(i) \in p_{1}$ a $\mathcal{A}^{*}$ and $\sigma^{k}(j) \in p_{2}$ a. $\mathcal{A}^{*}$ for some $a \in \mathcal{A}$ and words $p_{1}, p_{2} \in \mathcal{A}^{*}$ with $\mathbf{I}\left(p_{1}\right)=\mathbf{I}\left(p_{2}\right)$.

If SCC holds then $\left(X_{\sigma}, S\right)$ is measurably conjugate to a domain exchange $(\mathcal{R}, E)$ defined a.e. by

$$
E: \mathbf{x} \mapsto \mathbf{x}+\pi_{c}\left(\mathbf{e}_{i}\right), \quad \text { for } \mathbf{x} \in \mathcal{R}(i)
$$



## Periodic tilings

Having a periodic tiling by Rauzy fractals implies pure discrete spectrum. That's true for all irreducible Pisot beta-substitutions (e.g. Tribonacci)!


- $\mathbf{1}^{\perp}$ is the hyperplane orthogonal to $(1, \ldots, 1)$
- $\Lambda=\sum_{i \in \mathcal{A}} \mathbb{Z}\left(\mathbf{e}_{i}-\mathbf{e}_{1}\right)$


## Periodic tilings

Having a periodic tiling by Rauzy fractals implies pure discrete spectrum. That's true for all irreducible Pisot beta-substitutions (e.g. Tribonacci)!


- $\mathbf{1}^{\perp}$ is the hyperplane orthogonal to $(1, \ldots, 1)$
- $\Lambda=\sum_{i \in \mathcal{A}} \mathbb{Z}\left(\mathbf{e}_{i}-\mathbf{e}_{1}\right)$

Existence of necessary and sufficient geometrical, combinatorial and arithmetical conditions to get tilings.

The Pisot Conjecture

## Periodic tilings

But. .. unfortunately the Hokkaido Rauzy fractal does not tile periodically $\mathbb{C}$ !


## Broken lines

Reducible $\rightarrow$ linear dependencies

$$
\begin{aligned}
& \pi\left(\mathbf{e}_{1}\right)=\pi\left(\mathbf{e}_{3}\right)+\pi\left(\mathbf{e}_{4}\right), \\
& \pi\left(\mathbf{e}_{5}\right)=\pi\left(\mathbf{e}_{2}\right)+\pi\left(\mathbf{e}_{3}\right) .
\end{aligned}
$$

Combinatorially
$\chi: 1 \mapsto 34,2 \mapsto 2,3 \mapsto 3,4 \mapsto 4,5 \mapsto 32$.

## Broken lines

Reducible $\rightarrow$ linear dependencies

$$
\begin{aligned}
& \pi\left(\mathbf{e}_{1}\right)=\pi\left(\mathbf{e}_{3}\right)+\pi\left(\mathbf{e}_{4}\right), \\
& \pi\left(\mathbf{e}_{5}\right)=\pi\left(\mathbf{e}_{2}\right)+\pi\left(\mathbf{e}_{3}\right) .
\end{aligned}
$$

Combinatorially
$\chi: 1 \mapsto 34,2 \mapsto 2,3 \mapsto 3,4 \mapsto 4,5 \mapsto 32$.
Effect of $\chi$ on a fixed point:

| 12345 | 1 | 12123 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 3423432343423423 |  |  |

In this process we converted the substitution into an irreducible one!

Project now the vertices of the new broken line...

## Broken lines

Reducible $\rightarrow$ linear dependencies

$$
\begin{aligned}
& \pi\left(\mathbf{e}_{1}\right)=\pi\left(\mathbf{e}_{3}\right)+\pi\left(\mathbf{e}_{4}\right) \\
& \pi\left(\mathbf{e}_{5}\right)=\pi\left(\mathbf{e}_{2}\right)+\pi\left(\mathbf{e}_{3}\right)
\end{aligned}
$$

Combinatorially
$\chi: 1 \mapsto 34,2 \mapsto 2,3 \mapsto 3,4 \mapsto 4,5 \mapsto 32$.
Effect of $\chi$ on a fixed point:

| 12345 | 1 | 12123 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 3423432343423423 |  |  |

In this process we converted the substitution into an irreducible one!

Project now the vertices of the new broken line...


## Domain exchange

- $(\mathcal{R}, E)$ domain exchange on the original Hokkaido tile.

$$
E: \mathcal{R}(i) \mapsto \mathcal{R}(i)+\pi_{c}\left(\mathbf{e}_{i}\right), i \in \mathcal{A}
$$

- $(\widetilde{\mathcal{R}}, \widetilde{E})$ is a toral translation, since it induces a periodic tiling of $\mathbb{C} \bmod$ $\Lambda=\pi_{c}\left(\left(\mathbf{e}_{4}-\mathbf{e}_{3}\right) \mathbb{Z}+\left(\mathbf{e}_{4}-\mathbf{e}_{2}\right) \mathbb{Z}\right)$. $\widetilde{E}: \widetilde{\mathcal{R}}(i) \mapsto \widetilde{\mathcal{R}}(i)+\pi_{c}\left(\mathbf{e}_{i}\right), i \in\{2,3,4\}$
- $E$ is the first return of $\widetilde{E}$ on $\mathcal{R}$.


## Codings of the domain exchange

Let $\Omega=\overline{\left\{S^{k} w: k \in \mathbb{N}\right\}}$, where $w=\chi(u)$ is the coded fixed point of $\sigma$.
We have the following commutative diagram:

$\phi$ measure conjugation.

## Codings of the domain exchange

Let $\Omega=\overline{\left\{S^{k} w: k \in \mathbb{N}\right\}}$, where $w=\chi(u)$ is the coded fixed point of $\sigma$.
We have the following commutative diagram:

$\phi$ measure conjugation.
$\Rightarrow\left(X_{\sigma}, S, \mu\right)$ is the first return of a toral translation.

## Codings of the domain exchange

Let $\Omega=\overline{\left\{S^{k} w: k \in \mathbb{N}\right\}}$, where $w=\chi(u)$ is the coded fixed point of $\sigma$.
We have the following commutative diagram:

$\phi$ measure conjugation.
$\Rightarrow\left(X_{\sigma}, S, \mu\right)$ is the first return of a toral translation.
We can generalize what shown for the family of substitutions

$$
\sigma_{t}: 1 \mapsto 1^{t+1} 2,2 \mapsto 3,3 \mapsto 4,4 \mapsto 1^{t} 5,5 \mapsto 1
$$

## Dual approach

(Arnoux, Ito 01) formalism for irreducible Pisot substitutions.
Action of the substitution on 1-dimensional faces $\rightarrow$ broken line For $(\mathbf{x}, a) \in \mathbb{Z}^{d} \times \mathcal{A}$

$$
\mathbf{E}_{1}(\sigma)(\mathbf{x}, a)=\sum_{\sigma(a)=p b s}\left(M_{\sigma} \mathbf{x}+\mathbf{I}(p), b\right)
$$

Dual action on ( $d-1$ )-dimensional faces:

$$
\mathbf{E}_{1}^{*}(\sigma)(\mathbf{x}, a)^{*}=\sum_{\sigma(b)=p a s}\left(M_{\sigma}^{-1}(\mathbf{x}-\mathbf{I}(p)), b\right)^{*}
$$

## Dual approach

(Arnoux, Ito 01) formalism for irreducible Pisot substitutions.
Action of the substitution on 1-dimensional faces $\rightarrow$ broken line For $(\mathbf{x}, a) \in \mathbb{Z}^{d} \times \mathcal{A}$

$$
\mathbf{E}_{1}(\sigma)(\mathbf{x}, a)=\sum_{\sigma(a)=p b s}\left(M_{\sigma} \mathbf{x}+\mathbf{I}(p), b\right)
$$

Dual action on ( $d-1$ )-dimensional faces:

$$
\mathbf{E}_{1}^{*}(\sigma)(\mathbf{x}, a)^{*}=\sum_{\sigma(b)=p a s}\left(M_{\sigma}^{-1}(\mathbf{x}-\mathbf{I}(p)), b\right)^{*}
$$

Useful for:
(1) generating Rauzy fractals as Hausdorff limits.
(2) producing stepped surfaces.

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Hausdorff limits

$$
\mathcal{R}(a)=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{1}^{*}(\sigma)^{k}(\mathbf{0}, a)^{*}\right)
$$

## Stepped surfaces

Set of coloured points "near" $\mathbb{K}_{c}$ :

$$
\Gamma=\left\{(\mathbf{x}, a) \in \mathbb{Z}^{d} \times \mathcal{A}: \mathbf{x} \in\left(\mathbb{K}_{c}\right)^{\geq}, \mathbf{x}-\mathbf{e}_{a} \in\left(\mathbb{K}_{c}\right)^{<}\right\}
$$

## Stepped surfaces

Set of coloured points "near" $\mathbb{K}_{c}$ :

$$
\Gamma=\left\{(\mathbf{x}, a) \in \mathbb{Z}^{d} \times \mathcal{A}: \mathbf{x} \in\left(\mathbb{K}_{c}\right)^{\geq}, \mathbf{x}-\mathbf{e}_{a} \in\left(\mathbb{K}_{c}\right)^{<}\right\}
$$

- $\mathbf{E}_{1}^{*}(\sigma)(\Gamma)=\Gamma \rightarrow$ self-replicating property (Kenyon).
- Aperiodic translation set (Delone set) for a self-replicating multiple tiling made of Rauzy fractals.
- Geometric representation as an arithmetic discrete model of the hyperplane $\mathbb{K}_{c}$, whose projection is a polygonal tiling.



## Higher dimensional dual maps

Reducible case: $n=\# \mathcal{A}>d=\operatorname{deg}(\beta)$.

## Higher dimensional dual maps

Reducible case: $n=\# \mathcal{A}>d=\operatorname{deg}(\beta)$.
We want to work with ( $d-1$ )-dimensional faces! The dual map $\mathbf{E}_{n-d+1}^{*}(\sigma)$ will suit:

$$
\mathbf{E}_{n-d+1}^{*}(\sigma)(\mathbf{x}, \underline{a})^{*}=\sum_{\underline{\underline{b}} \underline{\underline{p}} \underline{\underline{a}}}\left(M_{\sigma}^{-1}(\mathbf{x}-\mathbf{I}(\underline{p})), \underline{b}\right)^{*}
$$

## Higher dimensional dual maps

Reducible case: $n=\# \mathcal{A}>d=\operatorname{deg}(\beta)$.
We want to work with $(d-1)$-dimensional faces! The dual map $\mathbf{E}_{n-d+1}^{*}(\sigma)$ will suit:

$$
\mathbf{E}_{n-d+1}^{*}(\sigma)(\mathbf{x}, \underline{a})^{*}=\sum_{\underline{\underline{b}} \underline{\underline{p}} \underline{a}}\left(M_{\sigma}^{-1}(\mathbf{x}-\mathbf{I}(\underline{p})), \underline{b}\right)^{*}
$$

Remarks:

- $\mathbf{E}_{n-d+1}^{*}(\sigma)$ acts on $\binom{n}{n-d+1}$ oriented faces.
- If $\sigma$ is irreducible $n=d$ and $\mathbf{E}_{n-d+1}^{*}(\sigma)=\mathbf{E}_{1}^{*}(\sigma)$.
- $\mathbf{E}_{k}(\sigma)$ and $\mathbf{E}_{k}^{*}(\sigma)$ commute in general with boundary and coboundary operators (Sano, Arnoux, Ito 2001).
- Similar approach for the study of a free group automorphism associated with a complex Pisot root (Arnoux, Furukado, Harriss, Ito 2011).


## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\Gamma_{\mathcal{U}}:=\bigcup_{k \geq 0} \mathbf{E}_{3}^{*}(\sigma)^{5 k}(\mathcal{U}), \quad \mathcal{U}=\{(\mathbf{0}, 2 \wedge 3),(\mathbf{0}, 2 \wedge 4),(\mathbf{0}, 3 \wedge 4)\} .
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\Gamma_{\mathcal{U}}:=\bigcup_{k \geq 0} \mathbf{E}_{3}^{*}(\sigma)^{5 k}(\mathcal{U}), \quad \mathcal{U}=\{(\mathbf{0}, 2 \wedge 3),(\mathbf{0}, 2 \wedge 4),(\mathbf{0}, 3 \wedge 4)\} .
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\Gamma_{\mathcal{U}}:=\bigcup_{k \geq 0} \mathbf{E}_{3}^{*}(\sigma)^{5 k}(\mathcal{U}), \quad \mathcal{U}=\{(\mathbf{0}, 2 \wedge 3),(\mathbf{0}, 2 \wedge 4),(\mathbf{0}, 3 \wedge 4)\} .
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\Gamma_{\mathcal{U}}:=\bigcup_{k \geq 0} \mathbf{E}_{3}^{*}(\sigma)^{5 k}(\mathcal{U}), \quad \mathcal{U}=\{(\mathbf{0}, 2 \wedge 3),(\mathbf{0}, 2 \wedge 4),(\mathbf{0}, 3 \wedge 4)\} .
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\Gamma_{\mathcal{U}}:=\bigcup_{k \geq 0} \mathbf{E}_{3}^{*}(\sigma)^{5 k}(\mathcal{U}), \quad \mathcal{U}=\{(\mathbf{0}, 2 \wedge 3),(\mathbf{0}, 2 \wedge 4),(\mathbf{0}, 3 \wedge 4)\} .
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{\mathrm{a}})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$

## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Reducibility

Under certain hypotheses we solve the problems of (Ei, Ito, Rao 06):
(1) Geometric representation for stepped surfaces.
(2) Hausdorff limit definition of renormalized patches of polygons.
(3) Periodic (multiple) tiling.

$$
\mathcal{R}(\underline{a})+\pi_{c}(\mathbf{x})=\lim _{k \rightarrow \infty} \pi_{c}\left(M_{\sigma}^{k} \mathbf{E}_{n-d+1}^{*}(\sigma)^{k}(\mathbf{x}, \underline{a})^{*}\right)
$$



## Strange examples

(Joint work with X. Bressaud and T. Jolivet)
The geometrical interpretation seems to get harder for these substitutions, not satisfying the strong coincidence condition:

$$
\begin{gathered}
\sigma: 1 \mapsto 14,2 \mapsto 32,3 \mapsto 21,4 \mapsto 3 \\
\operatorname{char}\left(M_{\sigma}\right)=(x-1)\left(x^{3}-x^{2}-x-1\right)
\end{gathered}
$$

## Strange examples

(Joint work with X. Bressaud and T. Jolivet)
The geometrical interpretation seems to get harder for these substitutions, not satisfying the strong coincidence condition:

$$
\begin{gathered}
\sigma: 1 \mapsto 213,2 \mapsto 4,3 \mapsto 5,4 \mapsto 1,5 \mapsto 21 \\
\operatorname{char}\left(M_{\sigma}\right)=\left(x^{2}+x+1\right)\left(x^{3}-2 x^{2}+x-1\right)
\end{gathered}
$$



## Lifting in the neutral space

Projection: $\quad \pi_{c, n}: \mathbb{R}^{n} \rightarrow \mathbb{K}_{c} \oplus \mathbb{K}_{n}$.

## Lifting in the neutral space

Projection: $\quad \pi_{c, n}: \mathbb{R}^{n} \rightarrow \mathbb{K}_{c} \oplus \mathbb{K}_{n}$.


## Lifting in the neutral space

Projection: $\quad \pi_{c, n}: \mathbb{R}^{n} \rightarrow \mathbb{K}_{c} \oplus \mathbb{K}_{n}$.


Criterion (depending on the prefix automaton of the substitution) to know whether we get only finitely many layers.

In this case $\rightarrow$ NEW strong coincidence condition.

## Gluing together

Projecting down suitably we can glue the subtiles together...


## Gluing together

Projecting down suitably we can glue the subtiles together...


Figure : Symbolic splitting associated with the irreducible substitution $\tau: 1 \mapsto 12,2 \mapsto 32,3 \mapsto 1$.
....and obtain the connection with an irreducible substitution.

## Gluing together

Projecting down suitably we can glue the subtiles together...


Figure : Symbolic splitting associated with the irreducible substitution $\tau: 1 \mapsto 12,2 \mapsto 32,3 \mapsto 1$.
$\ldots$ and obtain the connection with an irreducible substitution.
Philosophy: Dynamically the reducible substitutive system behaves exactly as the irreducible one, after identifying some letters / changing projection. Technique: symbolic splitting.

## Hokkaido again



Figure: Rauzy fractal of the Hokkaido substitution in $\mathbb{K}_{c} \oplus \mathbb{K}_{n}$. The points distribute with logarithmic growth on a two-dimensional lattice.

## Hokkaido again

## Thank you!



Figure : Rauzy fractal of the Hokkaido substitution in $\mathbb{K}_{c} \oplus \mathbb{K}_{n}$. The points distribute with logarithmic growth on a two-dimensional lattice.

