Recurrence function of Sturmian sequences. A probabilistic study

Pablo Rotondo Universidad de la República, Uruguay

Recurrence function of Sturmian sequences. A probabilistic study

Pablo Rotondo Universidad de la República, Uruguay

Ongoing work with Valérie Berthé, Eda Cesaratto, Brigitte Vallée, and Alfredo Viola

SDA2, 8–10 April, 2015.

Main aim: description of the finite factors of an infinite word u

- How many factors of length $n? \longrightarrow Complexity$

– What are the gaps between them? \longrightarrow Recurrence

Very easy when the word is eventually periodic !

Main aim: description of the finite factors of an infinite word u

- How many factors of length $n? \longrightarrow Complexity$
- What are the gaps between them? \longrightarrow Recurrence

Very easy when the word is eventually periodic !

Sturmian words:

the "simplest" binary infinite words that are not eventually periodic

Main aim: description of the finite factors of an infinite word u

- How many factors of length $n? \longrightarrow Complexity$
- What are the gaps between them? $\longrightarrow \mathsf{Recurrence}$

Very easy when the word is eventually periodic !

Sturmian words:

the "simplest" binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words. Classical study : for each fixed Sturmian word,

what are the extreme bounds for the recurrence function?

Main aim: description of the finite factors of an infinite word u

– How many factors of length $n? \longrightarrow Complexity$

– What are the gaps between them? $\longrightarrow \mathsf{Recurrence}$

Very easy when the word is eventually periodic !

Sturmian words:

the "simplest" binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words. Classical study : for each fixed Sturmian word,

what are the extreme bounds for the recurrence function?

Here, in a convenient model,

we perform a probabilistic study:

For a "random" sturmian word, and for a given "position",

- what is the mean value of the recurrence?

- what is the limit distribution of the recurrence?

Plan of the talk

Complexity, Recurrence, and Sturmian words

Complexity and Recurrence Sturmian words Recurrence of Sturmian words

Our probabilistic point of view. Statement of the results

Classical results Our point of view Our main results.

Sketch of the proof

General description The dynamical system and the transfer operator Expressions of the main objects in terms of the transfer operator Asymptotic estimates.

Extensions: Work in progress

Complexity

 $\mathcal{L}_u(n)$ denotes the set of factors of length n in u.

Definition

Complexity function of an infinite word $u \in \mathcal{A}^{\mathbb{N}}$

$$p_u \colon \mathbb{N} \to \mathbb{N}, \qquad p_u(n) = |\mathcal{L}_u(n)|.$$

Two simple facts: $p_u(n) \le |\mathcal{A}|^n$, $p_u(n) \le p_u(n+1)$.

Important property

$$u \in \mathcal{A}^{\mathbb{N}}$$
 is not eventually periodic
 $\iff p_u(n+1) > p_u(n)$
 $\implies p_u(n) \ge n+1$.

Recurrence

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent iff each finite factor appears infinitely often and with bounded gaps.

Recurrence

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent iff each finite factor appears infinitely often and with bounded gaps.

Definition (Recurrence function)

Let $u \in \mathcal{A}^{\mathbb{N}}$ be uniformy recurrent. The recurrence function of u is:

$$\begin{split} R_{\langle u\rangle}(n) &= \inf \ \{m \in \mathbb{N}: \\ & \text{any } w \in \mathcal{L}_u(m) \text{ contains all the factors } v \in \mathcal{L}_u(n) \} \,. \end{split}$$

Recurrence

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent iff each finite factor appears infinitely often and with bounded gaps.

Definition (Recurrence function) Let $u \in \mathcal{A}^{\mathbb{N}}$ be uniformy recurrent. The recurrence function of u is: $R_{\langle u \rangle}(n) = \inf \{m \in \mathbb{N} :$ any $w \in \mathcal{L}_u(m)$ contains all the factors $v \in \mathcal{L}_u(n)\}$.

An important inequality between the two functions, the complexity function and the recurrence function

 $R_{\langle u \rangle}(n) \ge p_u(n) + n - 1.$

These are the "simplest" words that are not eventually periodic.

These are the "simplest" words that are not eventually periodic.

Definition

A word $u \in \{\mathbf{0}, \mathbf{1}\}^{\mathbb{N}}$ is Sturmian iff $p_u(n) = n + 1$ for each $n \ge 0$.

These are the "simplest" words that are not eventually periodic.

Definition

A word $u \in \{\mathbf{0}, \mathbf{1}\}^{\mathbb{N}}$ is Sturmian iff $p_u(n) = n + 1$ for each $n \ge 0$.

Explicit construction

Associate with a pair (α,β) the two sequences

$$\underline{u}_{n} = \lfloor \alpha \left(n+1 \right) + \beta \rfloor - \lfloor \alpha n + \beta \rfloor$$

$$\overline{u}_{n} = \left\lceil \alpha \left(n+1 \right) + \beta \right\rceil - \left\lceil \alpha \, n+\beta \right\rceil$$

and the two words $\underline{S}(\alpha,\beta)$ and $\overline{S}(\alpha,\beta)$ produced in this way.

These are the "simplest" words that are not eventually periodic.

Definition

A word $u \in \{\mathbf{0}, \mathbf{1}\}^{\mathbb{N}}$ is Sturmian iff $p_u(n) = n + 1$ for each $n \ge 0$.

Explicit construction

Associate with a pair (α,β) the two sequences

$$\underline{u}_{n} = \lfloor \alpha \left(n+1 \right) + \beta \rfloor - \lfloor \alpha n + \beta \rfloor$$

$$\overline{u}_{n} = \left\lceil \alpha \left(n+1 \right) + \beta \right\rceil - \left\lceil \alpha \, n+\beta \right\rceil$$

and the two words $\underline{S}(\alpha,\beta)$ and $\overline{S}(\alpha,\beta)$ produced in this way.

A word u is Sturmian iff there are $\alpha, \beta \in [0, 1[$, with α irrational, such that $u = \underline{S}(\alpha, \beta)$ or $u = \overline{S}(\alpha, \beta)$.

Property

Let u be a Sturmian word of the form $\underline{S}(\alpha,\beta)$ or $\overline{S}(\alpha,\beta).$ Then

- u is uniformly recurrent
- $R_{\langle u \rangle}(n)$ only depends on α , and it is written as $R_{\alpha}(n)$.

Property

Let u be a Sturmian word of the form $\underline{S}(\alpha,\beta)$ or $\overline{S}(\alpha,\beta).$ Then

- u is uniformly recurrent
- $R_{\langle u \rangle}(n)$ only depends on α , and it is written as $R_{\alpha}(n)$.
- The sequence $(R_{\alpha}(n))$ only depends on the continuants of α .

Property

Let u be a Sturmian word of the form $\underline{S}(\alpha,\beta)$ or $\overline{S}(\alpha,\beta).$ Then

- u is uniformly recurrent
- $R_{\langle u \rangle}(n)$ only depends on α , and it is written as $R_{\alpha}(n)$.
- The sequence $(R_{\alpha}(n))$ only depends on the continuants of α .

Reminder :

The continuant $q_k(\alpha)$ is the denominator of the k-th convergent of α .

It is obtained via the truncation at depth k of the CFE of α .

The sequence $(q_k(\alpha))_k$ is strictly increasing.

Property

Let u be a Sturmian word of the form $\underline{S}(\alpha,\beta)$ or $\overline{S}(\alpha,\beta)$. Then

- u is uniformly recurrent
- $R_{\langle u \rangle}(n)$ only depends on α , and it is written as $R_{\alpha}(n)$.
- The sequence $(R_{\alpha}(n))$ only depends on the continuants of α .

Reminder :

The continuant $q_k(\alpha)$ is the denominator of the k-th convergent of α . It is obtained via the truncation at depth k of the CFE of α . The sequence $(q_k(\alpha))_k$ is strictly increasing.

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

 $R_{\alpha}(n) = n - 1 + q_{k-1}(\alpha) + q_k(\alpha), \qquad \text{for } n \in [q_{k-1}(\alpha), q_k(\alpha)].$

Recurrence function for two Sturmian words

Proposition

For any irrational $\alpha \in [0,1]$, one has $\liminf \frac{R_{\alpha}(n)}{n} \leq 3$.

Proposition

For any irrational $\alpha \in [0,1]$, one has $\liminf \frac{R_{\alpha}(n)}{n} \leq 3$.

Proof: Take the sequence $n_k = q_k - 1$.

Proposition

For any irrational $\alpha \in [0, 1]$, one has

 $\liminf \frac{R_{\alpha}(n)}{n} \leq 3.$

Proof: Take the sequence $n_k = q_k - 1$.

Theorem

For almost any irrational α , one has

$$\limsup \frac{R_{\alpha}(n)}{n \log n} = \infty, \qquad \limsup \frac{R_{\alpha}(n)}{n (\log n)^{c}} = 0 \quad \text{ for any } c > 1$$

 $\liminf \frac{R_{\alpha}(n)}{n} \leq 3.$

Proposition

For any irrational $\alpha \in [0,1]$, one has

Proof: Take the sequence $n_k = q_k - 1$.

Theorem

For almost any irrational α , one has

$$\limsup \frac{R_{\alpha}(n)}{n \log n} = \infty, \qquad \limsup \frac{R_{\alpha}(n)}{n (\log n)^{c}} = 0 \quad \text{ for any } c > 1$$

Proof: Apply the Morse-Hedlund formula and Khinchin's Theorem.

Our point of view

Usual studies of $R_{\alpha}(n)$

- consider all possible sequences of indices n.
- give information on extreme cases.
- give results for almost all α .

Our point of view

Usual studies of $R_{\alpha}(n)$

- consider all possible sequences of indices n.
- give information on extreme cases.
- give results for almost all α .

Here:

- ► we study particular sequences of indices n depending on α, defined with their position on the intervals [q_{k-1}(α), q_k(α)].
- we then draw α at random.
- we perform a probabilistic study.
- we then study the role of the position in the probabilistic behaviour of the recurrence function.

Subsequences with a fixed position

We work with particular subsequences of indices n

Given $\mu \in]0,1]$ the sequence

$$n_{k}^{\langle \mu \rangle}(\alpha) = q_{k-1}(\alpha) + \left\lfloor \mu \left(q_{k}(\alpha) - q_{k-1}(\alpha) \right) \right\rfloor$$

is the subsequence of position μ of α .

We study

the behaviour of

$$\frac{R_{\alpha}(n)}{n}, \quad n = n_k^{\langle \mu \rangle} = q_{k-1} + \left\lfloor \mu \left(q_k - q_{k-1} \right) \right\rfloor$$

when n has a fixed position μ within $[q_{k-1}, q_k]$. Remark that $(n_k^{\langle \mu \rangle})_k$ is a sequence depending on $\alpha \in \mathcal{I}$.

• what happens when α is drawn uniformly from $\mathcal{I} = [0, 1]$.

We study

the behaviour of

$$\frac{R_{\alpha}(n)}{n}, \quad n = n_k^{\langle \mu \rangle} = q_{k-1} + \left\lfloor \mu \left(q_k - q_{k-1} \right) \right\rfloor$$

when n has a fixed position μ within $[q_{k-1}, q_k]$. Remark that $(n_k^{\langle \mu \rangle})_k$ is a sequence depending on $\alpha \in \mathcal{I}$.

• what happens when α is drawn uniformly from $\mathcal{I} = [0, 1]$.

We consider the sequence of random variables

$$S_k^{\langle \mu
angle} = rac{R_lpha(n)+1}{n} = 1 + rac{q_{k-1}+q_k}{n}, \qquad n = n_k^{\langle \mu
angle}.$$

For any fixed $\mu \in [0,1]$, we perform an asymptotic study

- \blacktriangleright for expected values: $\lim_{k o \infty} \mathbb{E}[S_k^{\langle \mu
 angle}]$
- for distributions : $\lim_{k \to \infty} \Pr[S_k^{\langle \mu \rangle} \in J]$

First result : Expectations

For each $\mu \in]0,1]$, the sequence of random variables $S_k^{\langle \mu \rangle}$ satisfies

$$\mathbb{E}[S_k^{\langle \mu \rangle}] = 1 + \frac{1}{\log 2} \, \frac{|\log \mu|}{1 - \mu} + O\left(\frac{\varphi^{2k}}{\mu}\right) + O\left(\varphi^k \, \frac{|\log \mu|}{1 - \mu}\right) \,,$$

(for $k \to \infty$). Here, $\varphi = (\sqrt{5} - 1)/2 \doteq 0.6180339...$ and the constants of the O-terms are uniform in μ and k.

Remark: The result only holds for $\mu > 0$.

Second result : Distributions

For each $\mu \in [0, 1]$ with $\mu \neq 1/2$, the sequence of random variables $S_k^{\langle \mu \rangle}$ has a limit density

$$s_{\mu}(x) = \frac{1}{\log 2(x-1) |2-\mu - x(1-\mu)|} \mathbf{1}_{I_{\mu}}(x).$$

Here, I_{μ} is the interval with endpoints 3 and $1 + 1/\mu$.

Second result : Distributions

For each $\mu \in [0, 1]$ with $\mu \neq 1/2$, the sequence of random variables $S_k^{\langle \mu \rangle}$ has a limit density

$$s_{\mu}(x) = \frac{1}{\log 2(x-1) |2 - \mu - x(1-\mu)|} \mathbf{1}_{I_{\mu}}(x).$$

Here, I_{μ} is the interval with endpoints 3 and $1 + 1/\mu$. For all $b \ge \min\{3, 1 + \frac{1}{\mu}\}$

$$\Pr\left[S_k^{\langle\mu
angle}\leq b
ight]=\int_0^b s_\mu(x)dx+rac{1}{b}\,O\left(arphi^k
ight)\,.$$

where the constant of the O-term is uniform in b and k. When $|\mu - 1/2| \ge \epsilon$ for a fixed $\epsilon > 0$, it is also uniform in μ . Limit distribution for $\mu = 1/4$

Interval	Empirical Pr	Asymptotic Pr
[3.0, 3.0]	0.0	0.0
[3.0, 3.5]	0.485237	0. 485 4
[3.0, 4.0]	0. 73 7139	0. 73 69
[3.0, 4.5]	0. 893 511	0. 893 1
[3.0, 5.0]	1.0	1.0

In blue, the scaled histogram for k=25, bin-width $\delta=1/10,$ obtained with 10^6 samples.

In red, the graph of the limit distribution $s_{1/4}(x) = \frac{1}{\log 2} \frac{4}{(x-1)(3x-7)}.$

Limit distribution for $\mu = 0$

In blue, the scaled histogram for $\mu=0,\,k=25,$ bin-width $\delta=1/10,$ obtained with 10^6 samples.

In red, the graph of
$$s_0(x) = \frac{1}{\log 2} \frac{1}{(x-1)(x-2)}$$

i) We drop the integer part in $S_k^{\langle \mu \rangle}$ getting

$$\tilde{S}_{k}^{\langle \mu \rangle} = 1 + \frac{q_{k} + q_{k-1}}{q_{k-1} + \mu (q_{k} - q_{k-1})},$$

which depends only on $\frac{q_{k-1}}{q_k}$. Indeed

$$ilde{S}_k^{\langle \mu
angle} = f_\mu \left(rac{q_{k-1}}{q_k}
ight), \qquad ext{with} \qquad f_\mu(x) = 1 + rac{1+x}{x+\mu \left(1-x
ight)}.$$

i) We drop the integer part in $S_k^{\langle \mu \rangle}$ getting

$$\tilde{S}_{k}^{\langle \mu \rangle} = 1 + \frac{q_{k} + q_{k-1}}{q_{k-1} + \mu (q_{k} - q_{k-1})},$$

which depends only on $\frac{q_{k-1}}{q_k}$. Indeed

$$ilde{S}_k^{\langle\mu
angle} = f_\mu\left(rac{q_{k-1}}{q_k}
ight), \qquad ext{with} \qquad f_\mu(x) = 1 + rac{1+x}{x+\mu\left(1-x
ight)}.$$

ii) The expected value and the distribution of $\tilde{S}_{k}^{\langle \mu \rangle}$ are expressed with the *k*-th iterate of the Perron-Frobenius operator **H**.

i) We drop the integer part in $S_k^{\langle \mu \rangle}$ getting

$$\tilde{S}_{k}^{\langle \mu \rangle} = 1 + \frac{q_{k} + q_{k-1}}{q_{k-1} + \mu (q_{k} - q_{k-1})},$$

which depends only on $\frac{q_{k-1}}{q_k}$. Indeed

$$ilde{S}_k^{\langle \mu
angle} = f_\mu \left(rac{q_{k-1}}{q_k}
ight), \qquad ext{with} \qquad f_\mu(x) = 1 + rac{1+x}{x+\mu \left(1-x
ight)}.$$

- ii) The expected value and the distribution of $\tilde{S}_{k}^{\langle \mu \rangle}$ are expressed with the *k*-th iterate of the Perron-Frobenius operator **H**.
- iii) The asymptotics for $k \to \infty$ is obtained by using the spectral properties of **H**, when acting on the space of functions of bounded variation.

i) We drop the integer part in $S_k^{\langle \mu \rangle}$ getting

$$\tilde{S}_{k}^{\langle \mu \rangle} = 1 + \frac{q_{k} + q_{k-1}}{q_{k-1} + \mu (q_{k} - q_{k-1})},$$

which depends only on $\frac{q_{k-1}}{q_k}$. Indeed

$$ilde{S}_k^{\langle \mu
angle} = f_\mu \left(rac{q_{k-1}}{q_k}
ight), \qquad ext{with} \qquad f_\mu(x) = 1 + rac{1+x}{x+\mu \left(1-x
ight)}.$$

- ii) The expected value and the distribution of $\tilde{S}_{k}^{\langle \mu \rangle}$ are expressed with the *k*-th iterate of the Perron-Frobenius operator **H**.
- iii) The asymptotics for $k \to \infty$ is obtained by using the spectral properties of **H**, when acting on the space of functions of bounded variation.
- iv) Finally we return from $\tilde{S}_k^{\langle \mu \rangle}$ to $S_k^{\langle \mu \rangle}$.

The Euclidean dynamical system

The Gauss map $T:[0,1]\rightarrow [0,1]$

$$T(x) = \left\{\frac{1}{x}\right\} = \frac{1}{x} - \left\lfloor\frac{1}{x}\right\rfloor$$

The inverse branches of T are:

$$\mathcal{H} = \left\{ h_m \colon x \mapsto \frac{1}{m+x} \quad : \quad m \ge 1 \right\}$$

The Euclidean dynamical system

The Gauss map $T: [0,1] \rightarrow [0,1]$

$$T(x) = \left\{\frac{1}{x}\right\} = \frac{1}{x} - \left\lfloor\frac{1}{x}\right\rfloor$$

The inverse branches of T are:

$$\mathcal{H} = \left\{ h_m \colon x \mapsto \frac{1}{m+x} \quad : \quad m \ge 1 \right\} \,.$$

$$\mathcal{H}^{k} = \{h_{m_{1},m_{2},\dots,m_{k}} = h_{m_{1}} \circ h_{m_{2}} \circ \dots \circ h_{m_{k}} : m_{1},\dots,m_{k} \ge 1\}.$$

The LFT $h_{m_1,\ldots,m_k} \in \mathcal{H}^k$ is expressed with continuants

$$h_{m_1,\dots,m_k}(x) = \frac{1}{m_1 + \frac{1}{\ddots + \frac{1}{m_k + x}}} = \frac{p_{k-1}x + p_k}{q_{k-1}x + q_k},$$

The LFT $h_{m_1,\dots,m_k} \in \mathcal{H}^k$ is expressed with continuants

$$h_{m_1,\dots,m_k}(x) = \frac{1}{m_1 + \frac{1}{\ddots + \frac{1}{m_k + x}}} = \frac{p_{k-1}x + p_k}{q_{k-1}x + q_k},$$

and satisfies the mirror property

$$h_{m_k,\dots,m_1}(x) = \frac{1}{m_k + \frac{1}{\dots + \frac{1}{m_1 + x}}} = \frac{p_{k-1}x + q_{k-1}}{p_k x + q_k}.$$

The Perron-Frobenius operator ${\boldsymbol{\mathsf{H}}}$

If $g \in \mathcal{C}^0(\mathcal{I})$ is the density of α , what is the density of $T(\alpha)$?

The Perron-Frobenius operator \mathbf{H}

If $g \in \mathcal{C}^0(\mathcal{I})$ is the density of α , what is the density of $T(\alpha)$?

The Perron-Frobenius operator \mathbf{H}

The Perron-Frobenius operator \mathbf{H}

For $k \geq 1$, the density of $T^k(\alpha)$ is given by the k-th iterate of ${f H}$

$$\mathbf{H}^{k}[g](x) = \sum_{h \in \mathcal{H}^{k}} \left| h'(x) \right| \, g\left(h(x)\right) \, .$$

H is called the Perron-Frobenius operator (or the density transform).

Evaluating at x = 0

$$\mathbf{H}^{k}[g](0) = \sum_{m_1,\dots,m_k \ge 1} \frac{1}{q_k^2} g\left(\frac{\mathbf{p}_k}{q_k}\right) \,.$$

Evaluating at x = 0

$$\mathbf{H}^{k}[g](0) = \sum_{m_1,\dots,m_k \ge 1} \frac{1}{q_k^2} g\left(\frac{p_k}{q_k}\right) \,.$$

As the sum is over all k-tuples, we apply the mirror property, and

$$\mathbf{H}^{k}[g](0) = \sum_{m_{1},\dots,m_{k} \ge 1} \frac{1}{q_{k}^{2}} g\left(\frac{q_{k-1}}{q_{k}}\right)$$

•

Expressions in terms of the operator \mathbf{H} .

Three main facts:

 \blacktriangleright The intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$ form a partition of (0,1)

Three main facts:

- \blacktriangleright The intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$ form a partition of (0,1)
- $\tilde{S}_{k}^{\langle \mu \rangle}$ is a step function, constant on each $h_{m_{1},...,m_{k}}\left(\mathcal{I}\right)$,

$$\tilde{S}_{k}^{\langle\mu
angle} = f_{\mu}\left(rac{q_{k-1}}{q_{k}}
ight)$$

Three main facts:

- \blacktriangleright The intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$ form a partition of (0,1)
- $\tilde{S}_{k}^{\langle\mu
 angle}$ is a step function, constant on each $h_{m_{1},...,m_{k}}\left(\mathcal{I}
 ight)$,

$$\tilde{S}_{k}^{\langle\mu\rangle} = f_{\mu}\left(rac{q_{k-1}}{q_{k}}
ight)$$

• The length of the interval $h_{m_1,...,m_k}(\mathcal{I})$ is

$$|h(0) - h(1)| = \frac{1}{q_k (q_k + q_{k-1})} = \frac{1}{q_k^2} \cdot \frac{1}{1 + \frac{q_{k-1}}{q_k}}$$

Three main facts:

- \blacktriangleright The intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$ form a partition of (0,1)
- $\tilde{S}_{k}^{\langle \mu \rangle}$ is a step function, constant on each $h_{m_{1},...,m_{k}}\left(\mathcal{I}\right)$,

$$\tilde{S}_{k}^{\langle \mu \rangle} = f_{\mu} \left(\frac{q_{k-1}}{q_{k}} \right)$$

• The length of the interval $h_{m_1,...,m_k}(\mathcal{I})$ is

$$|h(0) - h(1)| = \frac{1}{q_k (q_k + q_{k-1})} = \frac{1}{q_k^2} \cdot \frac{1}{1 + \frac{q_{k-1}}{q_k}}$$

 $\text{Then:} \qquad \mathbb{E}\left[\tilde{S}_k^{\langle \mu \rangle}\right] = \sum_{m_1, \dots, m_k \geq 1} \frac{1}{q_k^2} \, \frac{f_\mu(q_{k-1}/q_k)}{1 + (q_{k-1}/q_k)} = \mathbf{H}^k \left[\frac{f_\mu(x)}{1 + x}\right](0) \, ,$

Three main facts:

- \blacktriangleright The intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$ form a partition of (0,1)
- $\tilde{S}_{k}^{\langle \mu \rangle}$ is a step function, constant on each $h_{m_{1},...,m_{k}}\left(\mathcal{I}\right)$,

$$\tilde{S}_{k}^{\langle \mu \rangle} = f_{\mu} \left(\frac{q_{k-1}}{q_{k}} \right)$$

• The length of the interval $h_{m_1,...,m_k}(\mathcal{I})$ is

$$|h(0) - h(1)| = \frac{1}{q_k (q_k + q_{k-1})} = \frac{1}{q_k^2} \cdot \frac{1}{1 + \frac{q_{k-1}}{q_k}}$$

Then: $\mathbb{E}\left[\tilde{S}_{k}^{\langle\mu\rangle}\right] = \sum_{m_{1},\dots,m_{k}\geq1} \frac{1}{q_{k}^{2}} \frac{f_{\mu}(q_{k-1}/q_{k})}{1+(q_{k-1}/q_{k})} = \mathbf{H}^{k}\left[\frac{f_{\mu}(x)}{1+x}\right](0),$ And $\Pr\left[\tilde{S}_{k}^{\langle\mu\rangle}\in J\right] = \mathbb{E}\left[\mathbf{1}_{J}\circ\tilde{S}_{k}^{\langle\mu\rangle}\right] = \mathbf{H}^{k}\left[\frac{\mathbf{1}_{J}\circ f_{\mu}(x)}{1+x}\right](0)$

Analytic properties of $\boldsymbol{\mathsf{H}}$

The operator $\boldsymbol{\mathsf{H}}$ acts on the Banach space $\mathsf{BV}(\mathcal{I})$ of functions of bounded variation,

with norm
$$||f||_{BV} = V_0^1(f) + ||f||_1$$
.

Analytic properties of **H**

The operator $\boldsymbol{\mathsf{H}}$ acts on the Banach space $\mathsf{BV}(\mathcal{I})$ of functions of bounded variation,

with norm
$$||f||_{BV} = V_0^1(f) + ||f||_1$$
.

The following dominant spectral properties are well-known

- Dominant eigenvalue (simple) : $\lambda = 1$
- Dominant eigenfunction: $\psi(x) = \frac{1}{\log 2} \frac{1}{1+x}$.
- Dominant eigenmeasure for the adjoint: Lebesgue measure
- Subdominant spectral radius: φ^2 with $\varphi = (\sqrt{5} 1)/2$.

Analytic properties of **H**

The operator $\boldsymbol{\mathsf{H}}$ acts on the Banach space $\mathsf{BV}(\mathcal{I})$ of functions of bounded variation,

with norm
$$||f||_{BV} = V_0^1(f) + ||f||_1$$
.

The following dominant spectral properties are well-known

- Dominant eigenvalue (simple) : $\lambda = 1$
- Dominant eigenfunction: $\psi(x) = \frac{1}{\log 2} \frac{1}{1+x}$.
- Dominant eigenmeasure for the adjoint: Lebesgue measure
- Subdominant spectral radius: φ^2 with $\varphi = (\sqrt{5} 1)/2$.

Then, for any $g \in \mathsf{BV}(\mathcal{I})$, the asymptotic estimate holds:

$$\mathbf{H}^{k}[g](x) = \frac{1}{\log 2} \frac{1}{1+x} \int_{0}^{1} g(x) dx + O\left(\varphi^{2k} \|g\|_{BV}\right) \,.$$

With the expressions for the expectations and distributions,

$$\mathbb{E}\left[\tilde{S}_{k}^{\langle\mu\rangle}\right] = \mathbf{H}^{k}\left[\frac{f_{\mu}(x)}{1+x}\right](0), \qquad \Pr\left[\tilde{S}_{k}^{\langle\mu\rangle} \in J\right] = \mathbf{H}^{k}\left[\frac{\mathbf{1}_{J} \circ f_{\mu}(x)}{1+x}\right](0)$$

We apply the previous result to the "red" functions:

With the expressions for the expectations and distributions,

$$\mathbb{E}\left[\tilde{S}_{k}^{\langle\mu\rangle}\right] = \mathbf{H}^{k}\left[\frac{f_{\mu}(x)}{1+x}\right](0), \qquad \Pr\left[\tilde{S}_{k}^{\langle\mu\rangle} \in J\right] = \mathbf{H}^{k}\left[\frac{\mathbf{1}_{J} \circ f_{\mu}(x)}{1+x}\right](0)$$

We apply the previous result to the "red" functions:

• The first function belongs to $\mathsf{B}V(\mathcal{I})$

only for $\mu \neq 0$, with a *BV*-norm $O(1/\mu)$.

With the expressions for the expectations and distributions,

$$\mathbb{E}\left[\tilde{S}_{k}^{\langle\mu\rangle}\right] = \mathbf{H}^{k}\left[\frac{f_{\mu}(x)}{1+x}\right](0), \qquad \Pr\left[\tilde{S}_{k}^{\langle\mu\rangle} \in J\right] = \mathbf{H}^{k}\left[\frac{\mathbf{1}_{J} \circ f_{\mu}(x)}{1+x}\right](0)$$

We apply the previous result to the "red" functions:

• The first function belongs to $\mathsf{B}V(\mathcal{I})$

only for $\mu \neq 0$, with a *BV*-norm $O(1/\mu)$.

• The second function always belongs to $\mathsf{B}V(\mathcal{I})$,

even for $\mu = 0$ with a bounded *BV*-norm wrt μ .

The limit distribution

$$\lim_{k \to \infty} \Pr\left[\tilde{S}_k^{\langle \mu \rangle} \in J\right] = \frac{1}{\log 2} \int_0^1 \frac{\mathbf{1}_J \circ f_\mu(x)}{1+x} dx,$$

is expressed with the inverse of f_{μ} in the interval I_{μ} .

With the expressions for the expectations and distributions,

$$\mathbb{E}\left[\tilde{S}_{k}^{\langle\mu\rangle}\right] = \mathbf{H}^{k}\left[\frac{f_{\mu}(x)}{1+x}\right](0), \qquad \Pr\left[\tilde{S}_{k}^{\langle\mu\rangle} \in J\right] = \mathbf{H}^{k}\left[\frac{\mathbf{1}_{J} \circ f_{\mu}(x)}{1+x}\right](0)$$

We apply the previous result to the "red" functions:

• The first function belongs to $\mathsf{B}V(\mathcal{I})$

only for $\mu \neq 0$, with a *BV*-norm $O(1/\mu)$.

• The second function always belongs to $\mathsf{B}V(\mathcal{I})$,

even for $\mu = 0$ with a bounded *BV*-norm wrt μ .

The limit distribution

$$\lim_{k \to \infty} \Pr\left[\tilde{S}_k^{\langle \mu \rangle} \in J\right] = \frac{1}{\log 2} \int_0^1 \frac{\mathbf{1}_J \circ f_\mu(x)}{1+x} dx,$$

is expressed with the inverse of f_{μ} in the interval I_{μ} .

Thus the asymptotics are obtained for $\tilde{S}_k^{\langle \mu \rangle}$. We then return to $S_k^{\langle \mu \rangle}$.

As our estimates are uniform wrt position μ , and index k,

- it is possible to deal with a position which depends on k.
 - We then let $\mu_k \to 0$ as $k \to \infty$.
 - We obtain asymptotic estimates for the expectations.

As our estimates are uniform wrt position μ , and index k,

it is possible to deal with a position which depends on k.

– We then let $\mu_k \to 0$ as $k \to \infty$.

- We obtain asymptotic estimates for the expectations.

On the set $\mathcal{R}^{[M]}$ of the reals α with quotients $m_k \leq M$, the quotient q_{k-1}/q_k admits a lower bound 1/(M+1). – We perform a probabilistic study on $\mathcal{R}^{[M]}$ endowed with the Hausdorff measure. – We study the transition when the bound $M \to \infty$.

As our estimates are uniform wrt position μ , and index k,

it is possible to deal with a position which depends on k.

– We then let $\mu_k \to 0$ as $k \to \infty$.

- We obtain asymptotic estimates for the expectations.

On the set $\mathcal{R}^{[M]}$ of the reals α with quotients $m_k \leq M$, the quotient q_{k-1}/q_k admits a lower bound 1/(M+1). – We perform a probabilistic study on $\mathcal{R}^{[M]}$ endowed with the Hausdorff measure.

– We study the transition when the bound $M \to \infty$.

We perform a probabilistic study on rational numbers α .

- They give rise to periodic words,
- We study the transition when the denominator $N \to \infty$.

As our estimates are uniform wrt position μ , and index k,

it is possible to deal with a position which depends on k.

– We then let $\mu_k \to 0$ as $k \to \infty$.

- We obtain asymptotic estimates for the expectations.

On the set $\mathcal{R}^{[M]}$ of the reals α with quotients $m_k \leq M$, the quotient q_{k-1}/q_k admits a lower bound 1/(M+1). – We perform a probabilistic study on $\mathcal{R}^{[M]}$ endowed with the Hausdorff measure.

– We study the transition when the bound $M \to \infty$.

We perform a probabilistic study on rational numbers α .

- They give rise to periodic words,

– We study the transition when the denominator $N \rightarrow \infty$.

We also deal with quadratic irrationals α :

these occur for Sturmian words obtained with substitutions.

References

- P. Alessandri, and V. Berthé, Three distance theorems and combinatorics on words, L'Enseignement Mathématique, 44, pp. 103–132, 1998.
- M. Iosifescu, and C. Kraaaikamp, Metrical Theory of Continued Fractions, Collection Mathematics and Its Applications, Vol 547, Kluwer Academic Press, 2002.
- E. Cesaratto, and B. Vallée,

Pseudo-randomness of a random Kronecker sequence. An instance of dynamical analysis,

To appear as a chapter in the book Combinatorics, Words and Symbolic Dynamics (ed. V. Berthé and M. Rigo).

J. Bourdon, B. Daireaux, and B. Vallée, Dynamical analysis of α-Euclidean Algorithms, *Journal of Algorithms*, 44, pp. 246-285, 2002.