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Study in combinatorics of words.
Main aim: description of the finite factors of an infinite word u

– How many factors of length n? −→ Complexity
– What are the gaps between them? −→ Recurrence

Very easy when the word is eventually periodic !

Sturmian words:
the “simplest” binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words.
Classical study : for each fixed Sturmian word,

what are the extreme bounds for the recurrence function?

Here, in a convenient model,
we perform a probabilistic study:

For a “random” sturmian word, and for a given “position”,
– what is the mean value of the recurrence?
– what is the limit distribution of the recurrence?
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Complexity

Lu(n) denotes the set of factors of length n in u.

Definition

Complexity function of an infinite word u ∈ AN

pu : N→ N , pu(n) = |Lu(n)| .

Two simple facts: pu(n) ≤ |A|n , pu(n) ≤ pu(n+ 1) .

Important property

u ∈ AN is not eventually periodic

⇐⇒ pu(n+ 1)>pu(n)

=⇒ pu(n)≥n+ 1 .



Recurrence

Definition (Uniform recurrence)

A word u ∈ AN is uniformly recurrent iff each finite factor appears
infinitely often and with bounded gaps.

Definition (Recurrence function)

Let u ∈ AN be uniformy recurrent. The recurrence function of u is:

R〈u〉(n) = inf {m ∈ N :

any w ∈ Lu(m) contains all the factors v ∈ Lu(n)} .

An important inequality between the two functions,

the complexity function and the recurrence function

R〈u〉(n) ≥ pu(n) + n− 1.
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Sturmian words

These are the “simplest” words that are not eventually periodic.

Definition

A word u ∈ {0, 1}N is Sturmian iff pu(n) = n+ 1 for each n ≥ 0.

Explicit construction

Associate with a pair (α, β) the two sequences

un = bα (n+ 1) + βc − bαn+ βc

un = dα (n+ 1) + βe − dαn+ βe

and the two words S(α, β) and S(α, β) produced in this way.

A word u is Sturmian iff there are α, β ∈ [0, 1[, with α irrational,
such that u = S(α, β) or u = S(α, β).
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Recurrence of Sturmian words

Property

Let u be a Sturmian word of the form S(α, β) or S(α, β). Then

I u is uniformly recurrent

I R〈u〉(n) only depends on α, and it is written as Rα(n).

I The sequence (Rα(n)) only depends on the continuants of α.

Reminder :
The continuant qk(α) is the denominator of the k-th convergent of α.
It is obtained via the truncation at depth k of the CFE of α.

The sequence (qk(α))k is strictly increasing.

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

Rα(n) = n− 1 + qk−1(α) + qk(α) , for n ∈ [qk−1(α), qk(α)[.
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Recurrence function for two Sturmian words
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Rα (n)
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Recurrence function for α = ϕ2,

with ϕ = (
√
5− 1)/2.
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Recurrence function for α = 1/e.



Recurrence function of Sturmian words: classical results.

Proposition

For any irrational α ∈ [0, 1], one has lim inf
Rα(n)

n
≤ 3 .

Proof: Take the sequence nk = qk − 1.

Theorem

For almost any irrational α, one has

lim sup
Rα(n)

n log n
=∞, lim sup

Rα(n)

n (log n)c
= 0 for any c > 1

Proof: Apply the Morse–Hedlund formula and Khinchin’s Theorem.
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Our point of view

Usual studies of Rα(n)

I consider all possible sequences of indices n.

I give information on extreme cases.

I give results for almost all α.

Here:

I we study particular sequences of indices n depending on α,
defined with their position on the intervals [qk−1(α), qk(α)[.

I we then draw α at random.

I we perform a probabilistic study.

I we then study the role of the position
in the probabilistic behaviour of the recurrence function.
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Subsequences with a fixed position

We work with particular subsequences of indices n

Given µ ∈]0, 1] the sequence

n
〈µ〉
k (α) = qk−1(α) + bµ (qk(α)− qk−1(α))c

is the subsequence of position µ of α.

nk−1 nk nk+1

qk−2 qk−1 qk qk+1

Figure: Sequence of indices n for µ = 1/3.



We study

I the behaviour of

Rα(n)

n
, n = n

〈µ〉
k = qk−1 + bµ (qk − qk−1)c

when n has a fixed position µ within [qk−1, qk[.

Remark that (n
〈µ〉
k )k is a sequence depending on α ∈ I.

I what happens when α is drawn uniformly from I = [0, 1].

We consider the sequence of random variables

S
〈µ〉
k =

Rα(n) + 1

n
= 1 +

qk−1 + qk
n

, n = n
〈µ〉
k .

For any fixed µ ∈ [0, 1], we perform an asymptotic study

I for expected values: lim
k→∞

E[S〈µ〉k ]

I for distributions : lim
k→∞

Pr[S
〈µ〉
k ∈ J ]
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First result : Expectations

For each µ ∈]0, 1], the sequence of random variables S
〈µ〉
k satisfies

E[S〈µ〉k ] = 1 +
1

log 2

|logµ|
1− µ

+O

(
ϕ2k

µ

)
+O

(
ϕk
|logµ|
1− µ

)
,

(for k →∞). Here, ϕ = (
√
5− 1)/2

.
= 0.6180339 . . .

and the constants of the O-terms are uniform in µ and k.

Remark: The result only holds for µ > 0.

0 0.2 0.4 0.6 0.8 1
µ

2.5

3

3.5

4

4.5

5

lim
k

[
S
〈
µ
〉

k

]

Limit of the expected value as a function of µ.



Second result : Distributions

For each µ ∈ [0, 1] with µ 6= 1/2,

the sequence of random variables S
〈µ〉
k has a limit density

sµ(x) =
1

log 2 (x− 1) |2− µ− x (1− µ)|
1Iµ(x) .

Here, Iµ is the interval with endpoints 3 and 1 + 1/µ.

For all b ≥ min{3, 1 + 1
µ}

Pr
[
S
〈µ〉
k ≤ b

]
=

∫ b

0
sµ(x)dx+

1

b
O
(
ϕk
)
.

where the constant of the O-term is uniform in b and k.

When |µ− 1/2| ≥ ε for a fixed ε > 0, it is also uniform in µ.
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Limit distribution for µ = 1/4

Interval Empirical Pr Asymptotic Pr

[3.0, 3.0] 0.0 0.0
[3.0, 3.5] 0.485237 0.4854 . . .
[3.0, 4.0] 0.737139 0.7369 . . .
[3.0, 4.5] 0.893511 0.8931 . . .
[3.0, 5.0] 1.0 1.0

3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

In blue, the scaled histogram for k = 25, bin-width δ = 1/10,
obtained with 106 samples.

In red, the graph of the limit distribution s1/4(x) =
1

log 2

4

(x− 1)(3x− 7)
.



Limit distribution for µ = 0
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s0 (x) = 1
log(2)

1
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In blue, the scaled histogram for µ = 0, k = 25, bin-width δ = 1/10,
obtained with 106 samples.

In red, the graph of s0(x) =
1

log 2

1

(x− 1)(x− 2)
.



Four steps in the proof

i) We drop the integer part in S
〈µ〉
k getting

S̃
〈µ〉
k = 1 +

qk + qk−1
qk−1 + µ (qk − qk−1)

,

which depends only on
qk−1
qk

. Indeed

S̃
〈µ〉
k = fµ

(
qk−1
qk

)
, with fµ(x) = 1 +

1 + x

x+ µ (1− x)
.

ii) The expected value and the distribution of S̃
〈µ〉
k are expressed

with the k–th iterate of the Perron-Frobenius operator H.

iii) The asymptotics for k →∞ is obtained by using the spectral
properties of H, when acting on the space of functions of
bounded variation.

iv) Finally we return from S̃
〈µ〉
k to S

〈µ〉
k .
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The Euclidean dynamical system

The Gauss map T : [0, 1]→ [0, 1]

T (x) =

{
1

x

}
=

1

x
−
⌊
1

x

⌋
.

The inverse branches of T are:

H =

{
hm : x 7→ 1

m+ x
: m ≥ 1

}
.

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

The inverse branches of T k are:

Hk = {hm1,m2,...mk = hm1 ◦ hm2 ◦ . . . ◦ hmk : m1, . . . ,mk ≥ 1} .
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The LFT hm1,...,mk ∈ Hk is expressed with continuants

hm1,...,mk(x) =
1

m1 +
1

. . . +
1

mk + x

=
pk−1 x+ pk
qk−1 x+ qk

,

and satisfies the mirror property

hmk,...,m1(x) =
1

mk +
1

. . . +
1

m1 + x

=
pk−1 x+ qk−1
pk x+ qk

.
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The Perron-Frobenius operator H

If g ∈ C0(I) is the density of α, what is the density of T (α)?

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

dy

|dh1(y)||dh2(y)||dh3(y)|

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=
∞∑
m=1

1

(m+ x)2
g

(
1

m+ x

)
.

For k ≥ 1, the density of T k(α) is given by the k-th iterate of H

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
H is called the Perron-Frobenius operator (or the density transform).
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For k ≥ 1, the density of T k(α) is given by the k-th iterate of H

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
H is called the Perron-Frobenius operator (or the density transform).
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Evaluating at x = 0

Hk[g](0) =
∑

m1,...,mk≥1

1

q2k
g

(
pk
qk

)
.

As the sum is over all k-tuples, we apply the mirror property, and

Hk[g](0) =
∑

m1,...,mk≥1

1

q2k
g

(
qk−1
qk

)
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Expressions in terms of the operator H.

Three main facts:

I The intervals h(I) for h ∈ Hk form a partition of (0, 1)

I S̃
〈µ〉
k is a step function, constant on each hm1,...,mk (I),

S̃
〈µ〉
k = fµ

(
qk−1
qk

)

I The length of the interval hm1,...,mk(I) is

|h(0)− h(1)| = 1

qk (qk + qk−1)
=

1

q2k
· 1

1 +
qk−1
qk

Then: E
[
S̃
〈µ〉
k

]
=

∑
m1,...,mk≥1

1

q2k

fµ(qk−1/qk)

1 + (qk−1/qk)
= Hk

[
fµ(x)

1 + x

]
(0) ,

And Pr
[
S̃
〈µ〉
k ∈ J

]
= E

[
1J ◦ S̃〈µ〉k

]
= Hk

[
1J ◦ fµ(x)

1 + x

]
(0)
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Analytic properties of H

The operator H acts on the Banach space BV(I) of functions of
bounded variation,

with norm ‖f‖BV = V 1
0 (f) + ‖f‖1 .

The following dominant spectral properties are well-known

I Dominant eigenvalue (simple) : λ = 1

I Dominant eigenfunction: ψ(x) =
1

log 2

1

1 + x
.

I Dominant eigenmeasure for the adjoint: Lebesgue measure

I Subdominant spectral radius: ϕ2 with ϕ = (
√
5− 1)/2.

Then, for any g ∈ BV(I), the asymptotic estimate holds:

Hk[g](x) =
1

log 2

1

1 + x

∫ 1

0
g(x)dx+O

(
ϕ2k ‖g‖BV

)
.
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Going back to the expectations and distributions.
With the expressions for the expectations and distributions,

E
[
S̃
〈µ〉
k

]
= Hk

[
fµ(x)

1 + x

]
(0), Pr

[
S̃
〈µ〉
k ∈ J

]
= Hk

[
1J ◦ fµ(x)

1 + x

]
(0)

We apply the previous result to the “red” functions:

I The first function belongs to BV (I)
only for µ 6= 0, with a BV -norm O(1/µ).

I The second function always belongs to BV (I),
even for µ = 0 with a bounded BV -norm wrt µ.

The limit distribution

lim
k→∞

Pr
[
S̃
〈µ〉
k ∈ J

]
=

1

log 2

∫ 1

0

1J ◦ fµ(x)
1 + x

dx,

is expressed with the inverse of fµ in the interval Iµ.

Thus the asymptotics are obtained for S̃
〈µ〉
k . We then return to S

〈µ〉
k .
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Possible extensions: work in progress

As our estimates are uniform wrt position µ, and index k,
it is possible to deal with a position which depends on k.

– We then let µk → 0 as k →∞.
– We obtain asymptotic estimates for the expectations.

On the set R[M ] of the reals α with quotients mk ≤M ,
the quotient qk−1/qk admits a lower bound 1/(M + 1).

– We perform a probabilistic study on R[M ]

endowed with the Hausdorff measure.
– We study the transition when the bound M →∞.

We perform a probabilistic study on rational numbers α.
– They give rise to periodic words,
– We study the transition when the denominator N →∞.

We also deal with quadratic irrationals α:
these occur for Sturmian words obtained with substitutions.
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