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Two main objects : sources and data structures

– Describe a modelling of natural sources

– Deduce consequences for the analysis of related data structures

Plan of the talk.

– A general model of sources

– The two digital structures : trie and dst.

– Probabilistic analysis of the structures, and its two steps

– Probabilistic analysis : the combinatorial step

– Probabilistic analysis : the analytic step – Need of more regular sources.

– Analysis of data structures : the result.



Two main objects : sources and data structures

– Describe a modelling of natural sources

– Deduce consequences for the analysis of related data structures

Plan of the talk.

– A general model of sources

– The two digital structures : trie and dst.

– Probabilistic analysis of the structures, and its two steps

– Probabilistic analysis : the combinatorial step

– Probabilistic analysis : the analytic step – Need of more regular sources.

– Analysis of data structures : the result.



Two main objects : sources and data structures

– Describe a modelling of natural sources

– Deduce consequences for the analysis of related data structures

Plan of the talk.

– A general model of sources

– The two digital structures : trie and dst.

– Probabilistic analysis of the structures, and its two steps

– Probabilistic analysis : the combinatorial step

– Probabilistic analysis : the analytic step – Need of more regular sources.

– Analysis of data structures : the result.



Sources (I)



In information theory, a source:=

a probabilistic mechanism which produces symbols from alphabet Σ,

one at each time unit.

When (discrete) time evolves, a source produces (infinite) words

Xn the symbol emitted at time t = n.

A probabilistic source is defined by the sequence (Xn) of random variables

The sequence may be bi-infinite (in ΣZ) ... or only right–infinite in ΣN.

– bi–infinite (in ΣZ) or Z–history : the indices n ∈ Z
easier for probabilistic studies

– right–infinite (in ΣN) or N–history : the indices n ∈ N
natural for algorithmic applications in text algorithms

Compromise: Only the positive part of the history is “shown”....

The negative part of the history

– is produced

– may have an influence on the positive part

– but remains “hidden”
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A source on the alphabet Σ with a positive history :

An origin for time : t = 0

a sequence of random variables (X0, X1, . . . , Xn, Xn+1 . . .)

Simple sources: sources with weak correlations between successive symbols

Memoryless source :

The variables Xi are independent,

with the same distribution defined by pi := Pr[Xn = i] (i ∈ Σ)

Markov chain:

The only dependence is between consecutive Xn’s, does not depend on n

defined by the transition matrix pi|j := Pr[Xn+1 = i |Xn = j]

A general source may have many, strong correlations between its symbols.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ?} defines the source S.
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A main analytical object related to any source:

the Dirichlet generating functions of the source

Λ(s) :=
∑
w∈Σ?

psw, Λ[k](s) =
∑
w∈Σk

psw,

Λ =
∑
k≥0

Λ[k]


Remark: Λ[k](1) = 1 for any k, Λ(1) =∞.

– they encapsulate the main probabilistic properties of the source

– they translate them into analytic properties

For instance, the entropy hS , (if it exists) is

hS := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

[
−1

k

d

ds
Λ[k](s)

∣∣
s=1

]
– they intervene in probabilistic analyses of algorithms and data structures.
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A main analytical object related to any source:

the Dirichlet series of probabilities, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−11 with Ps = (psj|i), Rs = (rsi ).

These nice expressions are due to multiplicative properties of probabilities.

And for a general source?

Does Λ(s) admit a nice alternative expression?
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A general source and its shifted sources

A general source S is completely defined by its fundamental probabilities

pw := the probability that a word of S begins with the prefix w ∈ Σ?

The source S defines a sequence of sources S(u) (for u ∈ Σ?)

For u ∈ Σ? with pu 6= 0, the source S(u) = S|u is a shifted source

– which gathers all the words of S which begin with u ∈ Σ?,

– from which the prefix u is removed.

The source S(u) is completely defined

– by the fundamental (conditional) probabilities pw/pu,

– when w is any finite prefix for which u ≤ w.

In this case, w can be written as w = u · v

The conditional probabilities pw|u = p(u.v)/pu are denoted as qv|u.

These are the fundamental probabilities of the source S(u).
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The generalized transition matrix of a source S

The weighted graph of the source

– vertices = sources S(u)

– edges weighted by the probabilities qv|u'
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P = the transition matrix of the graph.

= an infinite matrix, whose rows and columns are indexed by Σ?

The non zero elements at the row w are located at the columns w · i.

The generalized transition matrix P of the source S
extends the transition matrix of a Markov chain.

For s∈C, the matrix Ps is obtained from P by raising its elements to the power s
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The pruned graph and the pruned matrix (I)

Sometimes, the graph (and thus the matrix) can be pruned:

With an equivalence relation on the “shifted” sources

S(u) ≡ S(v) ⇐⇒ ∀w ∈ Σ?, qw|u = qw|v,

one only keeps the sources S(u) which have a different distribution

For simple sources, this provides a finite graph (a finite matrix).
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The pruned graph and the pruned matrix (II)

There are pruned graphs which remain infinite.

An instance of a VLMC (Variable Length Markov Chain)

The distribution of Xn depends

on the length of the run 0k which precedes it

Pruned graph :

– vertices S(ε),S(1) and S(0k) for k > 0

– all the edges labeled with 1

return to the source S(1).
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Return to the Dirichlet generating function of the source, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−1[1] with Ps = (psj|i), Rs = (rsi ).

A general source, with its (pruned) transition matrix Ps,

Λ(s) = tE · (I −Ps)
−1[1] with tE := (1, 0, 0 . . .)
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(II) Two data structures: trie and dst

dst : digital search tree — trie: shorthand for tree retrieval

Dynamical data structures which contain words.

– Useful for sorting, and searching words.

– Important to analyze their probabilistic shape

when built on a sequence of words emitted by a general source
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Two types of fundamental digital structures.

trie: introduced by Fredkin, 1959; dst: by Coffman and Eve, 1970

Both are trees used as dictionaries,

with three main operations (Search, Insert and Delete)

Play a central role in the Lempel-Ziv data compression scheme

These trees direct words to subtrees according to their first symbol

In a trie, – internal nodes do not contain data,

– the order of insertion does not intervene.

In a dst, a word is placed on the first free node.

In a trie, the word is placed when it is alone in its subtree.
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Their recursive definitions

Let Σ = {a, b} and a sequence Y of words over Σ

Y(α):= subsequence of Y beginning with α, the first symbol α removed.

trie(Y)

- If |Y| = 0, trie(Y) = ∅.

- If |Y| = 1, trie(Y) = Y

- If |Y| ≥ 2,

trie(Y)=〈•, trie(Y(a)), trie(Y(b))〉

dst(Y)

- If |Y| = 0, dst(Y) = ∅

- If |Y| ≥ 1, Y := Y \ {First(Y)}

dst(Y)=〈First(Y),dst(Y
(a)

), dst(Y
(b)

)〉
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– We will use these recursive definitions to write systems of equations.
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Role of the dst in the Lempel–Ziv Algorithm.

The Lempel-Ziv algorithm is a dictionary-based scheme

– it partitions a sequence into phrases of variable size

– a new phrase is the shortest substring not seen in the past as a phrase

obtained by adding a new symbol to a “Déjà Vu” phrase

The text 11000101011011101

is partitioned into phrases

(ε)− (1)− (10)− (0)− (01)−

(010)− (11)− (011)− (101)

The phrases are inserted in a DST
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Parameters for digital trees.

Two types of nodes in the digital structures

– nodes containing data – or nodes containing no data

A full node is a node containing data

(an internal node for the dst, an external node for the trie)

The level of a node: the length of the path from the root to it.

The size is the number of full nodes.

The two main shape parameters:

– Profile bn,k := the number of full nodes at level k in a tree of size n.

– Depth Dn := the level of a randomly selected full node.

b9,0 = 0,

b9,1 = 0

b9,2 = 2,

b9,3 = 1,

b9,4 = 2

b9,5 = 4

b9,0 = 1,

b9,1 = 2,

b9,2 = 3,

b9,3 = 2

b9,4 = 1

Dn=(1/9) [2 · 2 + 3 · 1 + 4 · 2 + 5 · 4] = 3.88 Dn=(1/9) [1 · 2 + 2 · 3 + 3 · 2 + 4 · 1] = 2
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(III) Probabilistic analysis of the data structures.



Probabilistic study

Input = a sequence X of words (independently) produced by the source.

Set of inputs = the set M? of such sequences X
Aim = the probabilistic shape of Tree (X ) for X ∈M?

Two different probabilistic models : Poisson and Bernoulli

– In the Bernoulli model, the cardinality N of X is fixed.

– In the Poisson model, the cardinality N follows a Poisson law of parameter z

Pr[N = k] = e−z
zk

k!
.

The Poisson model is easier to deal with (independence properties).

Thus: begin in the Poisson model and then return to the Bernoulli model...

For a random variable R defined on the set M? of inputs,

there is a relation between the two expectations

P (z) in the Poisson model and Bn in the Bernoulli model,

P (z) = e−z
∑
n≥0

Bn
zn

n!
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Two steps in the analysis of the profile polynomial bN (u) :=
∑
k≥0

bN,k u
k,

Deal with the expectations of bN (u): Bn(u) [Bernoulli] and P (z, u) [Poisson].

(A) The first (combinatorial) step provides an exact expression for Bn(u)

Expectation P (z, u) Mellin transform Binomial expression of

in the Poisson model =⇒ s 7→ Z(s, u) =⇒ the expectation Bn(u)

of z 7→ P (z, u) in the Bernoulli model

Bn(u) =

n∑
`=2

(−1)`
(
n

`

)
∆(`, u), with ∆(s, u) :=

1

Γ(−s)
Z(−s, u)

(B) The second (analytic) step provides an asymptotic estimate for Bn(u).

– It transforms the binomial expression into an integral expression.

– It transfers the knowledge about singularities of s 7→ ∆(s, u)

into asymptotic estimates of Bn(u)

– It depends on the “tameness” of s 7→ ∆(s, u).
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(III) Probabilistic analysis : the combinatorial step.



Profile in the Poisson model

Associate with a source S all its shifted sources S(w).

Profile b
(w)
N,k := the number of full nodes at level k of a digital tree of size N

built on the source S(w)

For a trie of size N

b
(w)
N,k = b

(w·0)
N0,k−1 + b

(w·1)
N1,k−1

b
(w)
N (u) = ub

(w·0)
N0

(u) + ub
(w·1)
N1

(u)

For a dst of size N + 1

b
(w)
N+1,k = b

(w·0)
N0,k−1 + b

(w·1)
N1,k−1

b
(w)
N+1(u) = ub

(w·0)
N0

(u) + ub
(w·1)
N1

(u)

N = N0 +N1

The number Nj of nodes in the j-th subtree (that begin with the symbol j)

follows a Poisson law of parameter qj|w z



System of equations on Poisson expectations.


P (w)(z, u) = z(1− e−z) + u

∑
i∈Σ

P (w.·i)(qi|w z, u) [for trie]

P (w)(z, u) +
d

dz
P (w)(z, u) = z + u

∑
i∈Σ

P (w·i)(qi|wz, u) [for dst]

For each type of tree,

a system of functional equations that involves in both cases

– the mapping z 7→ qz – the shift on words w 7→ w · i

– the derivation d/dz occurs for dst, not for tries.

=⇒ Analysis is more involved for dst.
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The Mellin transform of the Poisson expectation.

Begin with the equations satisfied by the Poisson expectations,
P (w)(z, u) = z(1− e−z) + u

∑
i∈Σ

P (w.·i)(qi|w z, u) [for trie]

P (w)(z, u) +
d

dz
P (w)(z, u) = z + u

∑
i∈Σ

P (w·i)(qi|wz, u) [for dst]

Consider

– their Mellin transforms Z(w)(s, u) :=

∫ +∞

0

P (w)(x, u)xs−1dx

– then ∆(w)(s, u) :=
1

Γ(−s)Z
(w)(−s, u),

– then the vector ∆(s, u) whose components are ∆(w)(s, u).

We finally obtain a linear system for ∆(s, u)

which involves the transition matrix Ps of the source{
∆T (s, u) −s1 = uPs∆T (s, u) [for trie]

∆D(s, u) −∆D(s+ 1, u) = uPs ∆D(s, u) [for dst]

with 1 = t(1, 1, 1, . . . )



The vectors ∆(s, u) satisfy,

∆T (s, u) = s(I − uPs)
−11

∆D(s, u) = (I − uPs)
−1∆D(s+ 1, u)

For dst, iterate: it appears an infinite product

Q(s, u) := (I − uPs)
−1 · . . . (I − uPs+k)−1 . . . .

Return to the initial source S [E := t(1, 0, 0, . . . )]

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

An exact expression for ∆(s, u) =⇒ a binomial expression for Bn(u)

The end of the combinatorial step.
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(IV) Probabilistic analysis : the analytic step.



Return to the operator Ps and its quasi-inverse (I − uPs)
−1.

Remind: Ps is a matrix whose rows and columns are induced by Σ?.

Its non zero coefficients at row w are located at columns w.i,

and are equal to qsi|w = (pw·i/pw)s

The operator Ps operates on L∞(Σ?) in a natural way:

L∞(Σ?):= the Banach space of the bounded functions X : Σ? → C,

endowed with the sup norm.

Y = Ps[X] ⇐⇒ Y (w) = Ps[X](w) :=
∑
i∈Σ

qsi|wX(w · i)

P := P1 is stochastic, =⇒ a dominant eigenvalue equal to 1.

Need : precise information for the quasi-inverse (I − uPs)
−1

for u close to 1 and <s close to 1.

Related to spectral properties of Ps on a convenient functional space....
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Which functional space ?

There are two cases (for the source)

– (i) The pruned graph becomes finite

– (ii) it remains infinite.

There are two cases (for the tree) = the T -case and the D-case.

For (ii) – we have to find a space where the infinite matrix Ps well behaves.

– there is an extra difficulty in the D-case: the infinite product

and we thus need a source with a past



Sources with a past

When the symbol Xn is emitted,

– it “looks at” (from its relative point of view) its neighbors,

– which form its reverse past Xn−1, · · · , X1, X0 in this order

– If w is the previously emitted prefix, it considers its mirror φ(w).

We introduce the g-function defined as g(i · w) := qi|φ(w)

Properties of g for “simple” sources:

Memoryless source ⇐⇒ g constant on each i · Σ?, i ∈ Σ

Markov chains of order 1 ⇐⇒ g constant on each ij · Σ?, i, j ∈ Σ

Markov chains of order k ⇐⇒ g constant on each w · Σ?, w ∈ Σk+1

For “good” sources: one may assume g to be continuous or even Hölder

with respect to the usual “distance” δ on Σ?,

δ(x, y) = 2−γ(x,y) where γ(x, y) the coincidence between x and y



Sources with a past

When the symbol Xn is emitted,

– it “looks at” (from its relative point of view) its neighbors,

– which form its reverse past Xn−1, · · · , X1, X0 in this order
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Sources with an infinite past.

If the source is regular enough (with a Hölder g-function for instance),

this finite reverse past can be extended to an infinite reverse past

It admits a stationary measure, and we consider the stationary source.

The (mirror of) transition matrix Ps is then extended into an operator

– which acts on the space H(ΣN) of Hölder functions X : ΣN → C.

– with now good spectral properties

(I − uPs)
−1 is extended to (I − uHs)−1 which is “tame”

for <s and u close to 1.

and the ∆(s, u) related to the two data structures

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

are also “tame”, with a “tameness” of the same type.
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(V) Probabilistic analysis : the result.



Main results

Consider a stationary tame source S,

and a digital tree built on n words independently drawn from the source.

We consider a trie (type T ) or a dst (type D), with X ∈ {T,D}

The mean and the variance of the depth Dn satisfy

E[Dn] = µ log n+ µX +R(n)

V[Dn] = ν log n+ νX +R(n)

– The dominant constants µ, ν only depend on the source, not on the tree type

– The subdominant constants µX , νX depend on the source and the tree

The inequality µT > µD holds.

– The remainder terms R(n) depend on the tameness of the source.

When the source S is not an unbiased memoryless source, one has ν 6= 0

and the depth Dn asymptotically follows a Gaussian law

Dn − E[Dn]√
V[Dn]

d−→ N (0, 1) [speed of convergence O(logn)−1/2].
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Precise results

E[Dn] = µ logn+ µX +R(n), V[Dn] = ν logn+ νX +R(n)

Dominant terms Types of tameness Remainder terms

µ = − 1

λ′(1)
S-tame O(n−δ)

ν =
λ′(1)2 − λ′′(1)

λ′(1)3
H-tame O (exp[−(logn)ρ])

P -tame ψ(n) +O(n−δ)

– λ(s) is the dominant eigenvalue of the source (I −Hs)−1 ; 1/(1− λ(s))

– δ and ρ: related to the geometry of the tameness

– ψ(n): a periodic function of logn



Conclusion

Description of the interaction between the source and the data structures,

– via the ∆(s, u) functions called the mixed Dirichlet series.

– precise comparison between the two structures (trie, dst).

Other instances of this interaction:

Analyses of sorting or searching algorithms when they deal with words,

with the cost ”number of symbols that are used for comparing words”.

Open question:

Is it possible to return to the analysis of the Lempel-Ziv algorithm?
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What happens on the left of the vertical line <s = 1?

It is important for the analysis to deal with a region R where (I − P̂s)
−1

is tame : analytic (except for s = 1) and of polynomial growth (=s→∞)

Different possible regions R where (I − P̂s)
−1 is tame.

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

1− σ ≤ a 1− σ ≤ t−α
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Possible tameness regions for a simple source

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

For which simple sources do these different situations occur?

For memoryless sources relative to probabilities (p1, p2, . . . , pr)

– S1 is impossible

– S3 occurs when all the ratios log pi/log pj are rational

– S2 occurs if there exists a ratio log pi/log pj

which is “diophantine” [badly approximable by rationals]
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For which Lipschitz, stationary, smooth sources do these different situations occur?

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

Geometric condition Arithmetic condition Periodicity condition

– S1: When ? Find some equivalent of the UNI Condition

‘the branches are not too often of the same shape” (??)

– S3: only when the source is conjugated to a simple source.

– S2: when the following condition [DIOP] holds

“there exists two cycles Ci and Cj
for which the ratio log p(Ci)/ log p(Cj) is “diophantine”
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