
VARIOUS POINTS OF VIEW ON SOURCES

IN ANALYTIC INFORMATION THEORY

APPLICATIONS to PROBABILISTIC ANALYSES

of DICTIONARY STRUCTURES

Brigitte Vallée

GREYC (CNRS and University of Caen)

Results obtained in joint works with

Eda Cesaratto, Julien Clément, Philippe Flajolet,

Kanal Hun, Mathieu Roux

Journées SDA2, Avril 2015

VARIOUS POINTS OF VIEW ON SOURCES

IN ANALYTIC INFORMATION THEORY

APPLICATIONS to PROBABILISTIC ANALYSES

of DICTIONARY STRUCTURES

Brigitte Vallée

GREYC (CNRS and University of Caen)

Results obtained in joint works with

Eda Cesaratto, Julien Clément, Philippe Flajolet,

Kanal Hun, Mathieu Roux

Journées SDA2, Avril 2015

VARIOUS POINTS OF VIEW ON SOURCES

IN ANALYTIC INFORMATION THEORY

APPLICATIONS to PROBABILISTIC ANALYSES

of DICTIONARY STRUCTURES

Brigitte Vallée

GREYC (CNRS and University of Caen)

Results obtained in joint works with

Eda Cesaratto, Julien Clément, Philippe Flajolet,

Kanal Hun, Mathieu Roux

Journées SDA2, Avril 2015

VARIOUS POINTS OF VIEW ON SOURCES

IN ANALYTIC INFORMATION THEORY

APPLICATIONS to PROBABILISTIC ANALYSES

of DICTIONARY STRUCTURES

Brigitte Vallée

GREYC (CNRS and University of Caen)

Results obtained in joint works with

Eda Cesaratto, Julien Clément, Philippe Flajolet,

Kanal Hun, Mathieu Roux

Journées SDA2, Avril 2015

VARIOUS POINTS OF VIEW ON SOURCES

IN ANALYTIC INFORMATION THEORY

APPLICATIONS to PROBABILISTIC ANALYSES

of DICTIONARY STRUCTURES

Brigitte Vallée

GREYC (CNRS and University of Caen)

Results obtained in joint works with

Eda Cesaratto, Julien Clément, Philippe Flajolet,

Kanal Hun, Mathieu Roux

Journées SDA2, Avril 2015

Two main objects : sources and data structures

– Describe a modelling of natural sources

– Deduce consequences for the analysis of related data structures

Plan of the talk.

– A general model of sources

– The two digital structures : trie and dst.

– Probabilistic analysis of the structures, and its two steps

– Probabilistic analysis : the combinatorial step

– Probabilistic analysis : the analytic step – Need of more regular sources.

– Analysis of data structures : the result.

Two main objects : sources and data structures

– Describe a modelling of natural sources

– Deduce consequences for the analysis of related data structures

Plan of the talk.

– A general model of sources

– The two digital structures : trie and dst.

– Probabilistic analysis of the structures, and its two steps

– Probabilistic analysis : the combinatorial step

– Probabilistic analysis : the analytic step – Need of more regular sources.

– Analysis of data structures : the result.

Two main objects : sources and data structures

– Describe a modelling of natural sources

– Deduce consequences for the analysis of related data structures

Plan of the talk.

– A general model of sources

– The two digital structures : trie and dst.

– Probabilistic analysis of the structures, and its two steps

– Probabilistic analysis : the combinatorial step

– Probabilistic analysis : the analytic step – Need of more regular sources.

– Analysis of data structures : the result.

Sources (I)

In information theory, a source:=

a probabilistic mechanism which produces symbols from alphabet Σ,

one at each time unit.

When (discrete) time evolves, a source produces (infinite) words

Xn the symbol emitted at time t = n.

A probabilistic source is defined by the sequence (Xn) of random variables

The sequence may be bi-infinite (in ΣZ) ... or only right–infinite in ΣN.

– bi–infinite (in ΣZ) or Z–history : the indices n ∈ Z
easier for probabilistic studies

– right–infinite (in ΣN) or N–history : the indices n ∈ N
natural for algorithmic applications in text algorithms

Compromise: Only the positive part of the history is “shown”....

The negative part of the history

– is produced

– may have an influence on the positive part

– but remains “hidden”

In information theory, a source:=

a probabilistic mechanism which produces symbols from alphabet Σ,

one at each time unit.

When (discrete) time evolves, a source produces (infinite) words

Xn the symbol emitted at time t = n.

A probabilistic source is defined by the sequence (Xn) of random variables

The sequence may be bi-infinite (in ΣZ) ... or only right–infinite in ΣN.

– bi–infinite (in ΣZ) or Z–history : the indices n ∈ Z
easier for probabilistic studies

– right–infinite (in ΣN) or N–history : the indices n ∈ N
natural for algorithmic applications in text algorithms

Compromise: Only the positive part of the history is “shown”....

The negative part of the history

– is produced

– may have an influence on the positive part

– but remains “hidden”

In information theory, a source:=

a probabilistic mechanism which produces symbols from alphabet Σ,

one at each time unit.

When (discrete) time evolves, a source produces (infinite) words

Xn the symbol emitted at time t = n.

A probabilistic source is defined by the sequence (Xn) of random variables

The sequence may be bi-infinite (in ΣZ) ... or only right–infinite in ΣN.

– bi–infinite (in ΣZ) or Z–history : the indices n ∈ Z
easier for probabilistic studies

– right–infinite (in ΣN) or N–history : the indices n ∈ N
natural for algorithmic applications in text algorithms

Compromise: Only the positive part of the history is “shown”....

The negative part of the history

– is produced

– may have an influence on the positive part

– but remains “hidden”

In information theory, a source:=

a probabilistic mechanism which produces symbols from alphabet Σ,

one at each time unit.

When (discrete) time evolves, a source produces (infinite) words

Xn the symbol emitted at time t = n.

A probabilistic source is defined by the sequence (Xn) of random variables

The sequence may be bi-infinite (in ΣZ) ... or only right–infinite in ΣN.

– bi–infinite (in ΣZ) or Z–history : the indices n ∈ Z
easier for probabilistic studies

– right–infinite (in ΣN) or N–history : the indices n ∈ N
natural for algorithmic applications in text algorithms

Compromise: Only the positive part of the history is “shown”....

The negative part of the history

– is produced

– may have an influence on the positive part

– but remains “hidden”

In information theory, a source:=

a probabilistic mechanism which produces symbols from alphabet Σ,

one at each time unit.

When (discrete) time evolves, a source produces (infinite) words

Xn the symbol emitted at time t = n.

A probabilistic source is defined by the sequence (Xn) of random variables

The sequence may be bi-infinite (in ΣZ) ... or only right–infinite in ΣN.

– bi–infinite (in ΣZ) or Z–history : the indices n ∈ Z
easier for probabilistic studies

– right–infinite (in ΣN) or N–history : the indices n ∈ N
natural for algorithmic applications in text algorithms

Compromise: Only the positive part of the history is “shown”....

The negative part of the history

– is produced

– may have an influence on the positive part

– but remains “hidden”

In information theory, a source:=

a probabilistic mechanism which produces symbols from alphabet Σ,

one at each time unit.

When (discrete) time evolves, a source produces (infinite) words

Xn the symbol emitted at time t = n.

A probabilistic source is defined by the sequence (Xn) of random variables

The sequence may be bi-infinite (in ΣZ) ... or only right–infinite in ΣN.

– bi–infinite (in ΣZ) or Z–history : the indices n ∈ Z
easier for probabilistic studies

– right–infinite (in ΣN) or N–history : the indices n ∈ N
natural for algorithmic applications in text algorithms

Compromise: Only the positive part of the history is “shown”....

The negative part of the history

– is produced

– may have an influence on the positive part

– but remains “hidden”

A source on the alphabet Σ with a positive history :

An origin for time : t = 0

a sequence of random variables (X0, X1, . . . , Xn, Xn+1 . . .)

Simple sources: sources with weak correlations between successive symbols

Memoryless source :

The variables Xi are independent,

with the same distribution defined by pi := Pr[Xn = i] (i ∈ Σ)

Markov chain:

The only dependence is between consecutive Xn’s, does not depend on n

defined by the transition matrix pi|j := Pr[Xn+1 = i |Xn = j]

A general source may have many, strong correlations between its symbols.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ?} defines the source S.

A source on the alphabet Σ with a positive history :

An origin for time : t = 0

a sequence of random variables (X0, X1, . . . , Xn, Xn+1 . . .)

Simple sources: sources with weak correlations between successive symbols

Memoryless source :

The variables Xi are independent,

with the same distribution defined by pi := Pr[Xn = i] (i ∈ Σ)

Markov chain:

The only dependence is between consecutive Xn’s, does not depend on n

defined by the transition matrix pi|j := Pr[Xn+1 = i |Xn = j]

A general source may have many, strong correlations between its symbols.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ?} defines the source S.

A source on the alphabet Σ with a positive history :

An origin for time : t = 0

a sequence of random variables (X0, X1, . . . , Xn, Xn+1 . . .)

Simple sources: sources with weak correlations between successive symbols

Memoryless source :

The variables Xi are independent,

with the same distribution defined by pi := Pr[Xn = i] (i ∈ Σ)

Markov chain:

The only dependence is between consecutive Xn’s, does not depend on n

defined by the transition matrix pi|j := Pr[Xn+1 = i |Xn = j]

A general source may have many, strong correlations between its symbols.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ?} defines the source S.

A source on the alphabet Σ with a positive history :

An origin for time : t = 0

a sequence of random variables (X0, X1, . . . , Xn, Xn+1 . . .)

Simple sources: sources with weak correlations between successive symbols

Memoryless source :

The variables Xi are independent,

with the same distribution defined by pi := Pr[Xn = i] (i ∈ Σ)

Markov chain:

The only dependence is between consecutive Xn’s, does not depend on n

defined by the transition matrix pi|j := Pr[Xn+1 = i |Xn = j]

A general source may have many, strong correlations between its symbols.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ?} defines the source S.

A source on the alphabet Σ with a positive history :

An origin for time : t = 0

a sequence of random variables (X0, X1, . . . , Xn, Xn+1 . . .)

Simple sources: sources with weak correlations between successive symbols

Memoryless source :

The variables Xi are independent,

with the same distribution defined by pi := Pr[Xn = i] (i ∈ Σ)

Markov chain:

The only dependence is between consecutive Xn’s, does not depend on n

defined by the transition matrix pi|j := Pr[Xn+1 = i |Xn = j]

A general source may have many, strong correlations between its symbols.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ?} defines the source S.

A main analytical object related to any source:

the Dirichlet generating functions of the source

Λ(s) :=
∑
w∈Σ?

psw, Λ[k](s) =
∑
w∈Σk

psw,

Λ =
∑
k≥0

Λ[k]


Remark: Λ[k](1) = 1 for any k, Λ(1) =∞.

– they encapsulate the main probabilistic properties of the source

– they translate them into analytic properties

For instance, the entropy hS , (if it exists) is

hS := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

[
−1

k

d

ds
Λ[k](s)

∣∣
s=1

]
– they intervene in probabilistic analyses of algorithms and data structures.

A main analytical object related to any source:

the Dirichlet generating functions of the source

Λ(s) :=
∑
w∈Σ?

psw, Λ[k](s) =
∑
w∈Σk

psw,

Λ =
∑
k≥0

Λ[k]


Remark: Λ[k](1) = 1 for any k, Λ(1) =∞.

– they encapsulate the main probabilistic properties of the source

– they translate them into analytic properties

For instance, the entropy hS , (if it exists) is

hS := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

[
−1

k

d

ds
Λ[k](s)

∣∣
s=1

]
– they intervene in probabilistic analyses of algorithms and data structures.

A main analytical object related to any source:

the Dirichlet generating functions of the source

Λ(s) :=
∑
w∈Σ?

psw, Λ[k](s) =
∑
w∈Σk

psw,

Λ =
∑
k≥0

Λ[k]


Remark: Λ[k](1) = 1 for any k, Λ(1) =∞.

– they encapsulate the main probabilistic properties of the source

– they translate them into analytic properties

For instance, the entropy hS , (if it exists) is

hS := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

[
−1

k

d

ds
Λ[k](s)

∣∣
s=1

]

– they intervene in probabilistic analyses of algorithms and data structures.

A main analytical object related to any source:

the Dirichlet generating functions of the source

Λ(s) :=
∑
w∈Σ?

psw, Λ[k](s) =
∑
w∈Σk

psw,

Λ =
∑
k≥0

Λ[k]


Remark: Λ[k](1) = 1 for any k, Λ(1) =∞.

– they encapsulate the main probabilistic properties of the source

– they translate them into analytic properties

For instance, the entropy hS , (if it exists) is

hS := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

[
−1

k

d

ds
Λ[k](s)

∣∣
s=1

]
– they intervene in probabilistic analyses of algorithms and data structures.

A main analytical object related to any source:

the Dirichlet series of probabilities, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−11 with Ps = (psj|i), Rs = (rsi).

These nice expressions are due to multiplicative properties of probabilities.

And for a general source?

Does Λ(s) admit a nice alternative expression?

A main analytical object related to any source:

the Dirichlet series of probabilities, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−11 with Ps = (psj|i), Rs = (rsi).

These nice expressions are due to multiplicative properties of probabilities.

And for a general source?

Does Λ(s) admit a nice alternative expression?

A main analytical object related to any source:

the Dirichlet series of probabilities, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−11 with Ps = (psj|i), Rs = (rsi).

These nice expressions are due to multiplicative properties of probabilities.

And for a general source?

Does Λ(s) admit a nice alternative expression?

A main analytical object related to any source:

the Dirichlet series of probabilities, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−11 with Ps = (psj|i), Rs = (rsi).

These nice expressions are due to multiplicative properties of probabilities.

And for a general source?

Does Λ(s) admit a nice alternative expression?

A general source and its shifted sources

A general source S is completely defined by its fundamental probabilities

pw := the probability that a word of S begins with the prefix w ∈ Σ?

The source S defines a sequence of sources S(u) (for u ∈ Σ?)

For u ∈ Σ? with pu 6= 0, the source S(u) = S|u is a shifted source

– which gathers all the words of S which begin with u ∈ Σ?,

– from which the prefix u is removed.

The source S(u) is completely defined

– by the fundamental (conditional) probabilities pw/pu,

– when w is any finite prefix for which u ≤ w.

In this case, w can be written as w = u · v

The conditional probabilities pw|u = p(u.v)/pu are denoted as qv|u.

These are the fundamental probabilities of the source S(u).

A general source and its shifted sources

A general source S is completely defined by its fundamental probabilities

pw := the probability that a word of S begins with the prefix w ∈ Σ?

The source S defines a sequence of sources S(u) (for u ∈ Σ?)

For u ∈ Σ? with pu 6= 0, the source S(u) = S|u is a shifted source

– which gathers all the words of S which begin with u ∈ Σ?,

– from which the prefix u is removed.

The source S(u) is completely defined

– by the fundamental (conditional) probabilities pw/pu,

– when w is any finite prefix for which u ≤ w.

In this case, w can be written as w = u · v

The conditional probabilities pw|u = p(u.v)/pu are denoted as qv|u.

These are the fundamental probabilities of the source S(u).

A general source and its shifted sources

A general source S is completely defined by its fundamental probabilities

pw := the probability that a word of S begins with the prefix w ∈ Σ?

The source S defines a sequence of sources S(u) (for u ∈ Σ?)

For u ∈ Σ? with pu 6= 0, the source S(u) = S|u is a shifted source

– which gathers all the words of S which begin with u ∈ Σ?,

– from which the prefix u is removed.

The source S(u) is completely defined

– by the fundamental (conditional) probabilities pw/pu,

– when w is any finite prefix for which u ≤ w.

In this case, w can be written as w = u · v

The conditional probabilities pw|u = p(u.v)/pu are denoted as qv|u.

These are the fundamental probabilities of the source S(u).

A general source and its shifted sources

A general source S is completely defined by its fundamental probabilities

pw := the probability that a word of S begins with the prefix w ∈ Σ?

The source S defines a sequence of sources S(u) (for u ∈ Σ?)

For u ∈ Σ? with pu 6= 0, the source S(u) = S|u is a shifted source

– which gathers all the words of S which begin with u ∈ Σ?,

– from which the prefix u is removed.

The source S(u) is completely defined

– by the fundamental (conditional) probabilities pw/pu,

– when w is any finite prefix for which u ≤ w.

In this case, w can be written as w = u · v

The conditional probabilities pw|u = p(u.v)/pu are denoted as qv|u.

These are the fundamental probabilities of the source S(u).

The generalized transition matrix of a source S

The weighted graph of the source

– vertices = sources S(u)

– edges weighted by the probabilities qv|u'

&

$

%

ε

0

00

000

...

001

...

01

010

...

011

...

1

10

100

...

101

...

11

110

...

111

...

p0 p1

q0|0 q1|0

q0|00 q1|00 q0|01 q1|01

q0|1 q1|1

q0|10 q1|10 q0|11 q1|11

1

P = the transition matrix of the graph.

= an infinite matrix, whose rows and columns are indexed by Σ?

The non zero elements at the row w are located at the columns w · i.

The generalized transition matrix P of the source S
extends the transition matrix of a Markov chain.

For s∈C, the matrix Ps is obtained from P by raising its elements to the power s

The generalized transition matrix of a source S

The weighted graph of the source

– vertices = sources S(u)

– edges weighted by the probabilities qv|u'

&

$

%

ε

0

00

000

...

001

...

01

010

...

011

...

1

10

100

...

101

...

11

110

...

111

...

p0 p1

q0|0 q1|0

q0|00 q1|00 q0|01 q1|01

q0|1 q1|1

q0|10 q1|10 q0|11 q1|11

1

P = the transition matrix of the graph.

= an infinite matrix, whose rows and columns are indexed by Σ?

The non zero elements at the row w are located at the columns w · i.

The generalized transition matrix P of the source S
extends the transition matrix of a Markov chain.

For s∈C, the matrix Ps is obtained from P by raising its elements to the power s

The generalized transition matrix of a source S

The weighted graph of the source

– vertices = sources S(u)

– edges weighted by the probabilities qv|u'

&

$

%

ε

0

00

000

...

001

...

01

010

...

011

...

1

10

100

...

101

...

11

110

...

111

...

p0 p1

q0|0 q1|0

q0|00 q1|00 q0|01 q1|01

q0|1 q1|1

q0|10 q1|10 q0|11 q1|11

1

P = the transition matrix of the graph.

= an infinite matrix, whose rows and columns are indexed by Σ?

The non zero elements at the row w are located at the columns w · i.

The generalized transition matrix P of the source S
extends the transition matrix of a Markov chain.

For s∈C, the matrix Ps is obtained from P by raising its elements to the power s

The pruned graph and the pruned matrix (I)

Sometimes, the graph (and thus the matrix) can be pruned:

With an equivalence relation on the “shifted” sources

S(u) ≡ S(v) ⇐⇒ ∀w ∈ Σ?, qw|u = qw|v,

one only keeps the sources S(u) which have a different distribution

For simple sources, this provides a finite graph (a finite matrix).

The pruned graph and the pruned matrix (I)

Sometimes, the graph (and thus the matrix) can be pruned:

With an equivalence relation on the “shifted” sources

S(u) ≡ S(v) ⇐⇒ ∀w ∈ Σ?, qw|u = qw|v,

one only keeps the sources S(u) which have a different distribution

For simple sources, this provides a finite graph (a finite matrix).

The pruned graph and the pruned matrix (II)

There are pruned graphs which remain infinite.

An instance of a VLMC (Variable Length Markov Chain)

The distribution of Xn depends

on the length of the run 0k which precedes it

Pruned graph :

– vertices S(ε),S(1) and S(0k) for k > 0

– all the edges labeled with 1

return to the source S(1).

The pruned graph and the pruned matrix (II)

There are pruned graphs which remain infinite.

An instance of a VLMC (Variable Length Markov Chain)

The distribution of Xn depends

on the length of the run 0k which precedes it

Pruned graph :

– vertices S(ε),S(1) and S(0k) for k > 0

– all the edges labeled with 1

return to the source S(1).

Return to the Dirichlet generating function of the source, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−1[1] with Ps = (psj|i), Rs = (rsi).

A general source, with its (pruned) transition matrix Ps,

Λ(s) = tE · (I −Ps)
−1[1] with tE := (1, 0, 0 . . .)

Return to the Dirichlet generating function of the source, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−1[1] with Ps = (psj|i), Rs = (rsi).

A general source, with its (pruned) transition matrix Ps,

Λ(s) = tE · (I −Ps)
−1[1] with tE := (1, 0, 0 . . .)

Return to the Dirichlet generating function of the source, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−1[1] with Ps = (psj|i), Rs = (rsi).

A general source, with its (pruned) transition matrix Ps,

Λ(s) = tE · (I −Ps)
−1[1] with tE := (1, 0, 0 . . .)

Return to the Dirichlet generating function of the source, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−1[1] with Ps = (psj|i), Rs = (rsi).

A general source, with its (pruned) transition matrix Ps,

Λ(s) = tE · (I −Ps)
−1[1] with tE := (1, 0, 0 . . .)

(II) Two data structures: trie and dst

dst : digital search tree — trie: shorthand for tree retrieval

Dynamical data structures which contain words.

– Useful for sorting, and searching words.

– Important to analyze their probabilistic shape

when built on a sequence of words emitted by a general source

(II) Two data structures: trie and dst

dst : digital search tree — trie: shorthand for tree retrieval

Dynamical data structures which contain words.

– Useful for sorting, and searching words.

– Important to analyze their probabilistic shape

when built on a sequence of words emitted by a general source

Two types of fundamental digital structures.

trie: introduced by Fredkin, 1959; dst: by Coffman and Eve, 1970

Both are trees used as dictionaries,

with three main operations (Search, Insert and Delete)

Play a central role in the Lempel-Ziv data compression scheme

These trees direct words to subtrees according to their first symbol

In a trie, – internal nodes do not contain data,

– the order of insertion does not intervene.

In a dst, a word is placed on the first free node.

In a trie, the word is placed when it is alone in its subtree.

s1=bbab · · · ; s2=abbaa · · · s3=babba · · · , s4=ababb · · · ; s5=babab · · · ; s6=aaaab · · ·

s6

a

s4

a

s2

b

b

a

s5

a

s3

b

b

a

s1

b

b
s1

s2

s6

a

s4

b

a

s3

s5

a

b

1

s1 =

bbab · · · ; s2=abbaa · · · s3=babba · · · , s4=ababb · · · ; s5=babab · · · ; s6=

aaaab · · ·

Two types of fundamental digital structures.

trie: introduced by Fredkin, 1959; dst: by Coffman and Eve, 1970

Both are trees used as dictionaries,

with three main operations (Search, Insert and Delete)

Play a central role in the Lempel-Ziv data compression scheme

These trees direct words to subtrees according to their first symbol

In a trie, – internal nodes do not contain data,

– the order of insertion does not intervene.

In a dst, a word is placed on the first free node.

In a trie, the word is placed when it is alone in its subtree.

s1=bbab · · · ; s2=abbaa · · · s3=babba · · · , s4=ababb · · · ; s5=babab · · · ; s6=aaaab · · ·

s6

a

s4

a

s2

b

b

a

s5

a

s3

b

b

a

s1

b

b
s1

s2

s6

a

s4

b

a

s3

s5

a

b

1

s1 =

bbab · · · ; s2=abbaa · · · s3=babba · · · , s4=ababb · · · ; s5=babab · · · ; s6=

aaaab · · ·

Two types of fundamental digital structures.

trie: introduced by Fredkin, 1959; dst: by Coffman and Eve, 1970

Both are trees used as dictionaries,

with three main operations (Search, Insert and Delete)

Play a central role in the Lempel-Ziv data compression scheme

These trees direct words to subtrees according to their first symbol

In a trie, – internal nodes do not contain data,

– the order of insertion does not intervene.

In a dst, a word is placed on the first free node.

In a trie, the word is placed when it is alone in its subtree.

s1=bbab · · · ; s2=abbaa · · · s3=babba · · · , s4=ababb · · · ; s5=babab · · · ; s6=aaaab · · ·

s6

a

s4

a

s2

b

b

a

s5

a

s3

b

b

a

s1

b

b
s1

s2

s6

a

s4

b

a

s3

s5

a

b

1

s1 =

bbab · · · ; s2=abbaa · · · s3=babba · · · , s4=ababb · · · ; s5=babab · · · ; s6=

aaaab · · ·

Their recursive definitions

Let Σ = {a, b} and a sequence Y of words over Σ

Y(α):= subsequence of Y beginning with α, the first symbol α removed.

trie(Y)

- If |Y| = 0, trie(Y) = ∅.

- If |Y| = 1, trie(Y) = Y

- If |Y| ≥ 2,

trie(Y)=〈•, trie(Y(a)), trie(Y(b))〉

dst(Y)

- If |Y| = 0, dst(Y) = ∅

- If |Y| ≥ 1, Y := Y \ {First(Y)}

dst(Y)=〈First(Y),dst(Y
(a)

), dst(Y
(b)

)〉

s6

a

s4

a

s2

b

b

a

s5

a

s3

b

b

a

s1

b

b
s1

s2

s6

a

s4

b

a

s3

s5

a

b

1

– We will use these recursive definitions to write systems of equations.

Their recursive definitions

Let Σ = {a, b} and a sequence Y of words over Σ

Y(α):= subsequence of Y beginning with α, the first symbol α removed.

trie(Y)

- If |Y| = 0, trie(Y) = ∅.

- If |Y| = 1, trie(Y) = Y

- If |Y| ≥ 2,

trie(Y)=〈•, trie(Y(a)), trie(Y(b))〉

dst(Y)

- If |Y| = 0, dst(Y) = ∅

- If |Y| ≥ 1, Y := Y \ {First(Y)}

dst(Y)=〈First(Y),dst(Y
(a)

), dst(Y
(b)

)〉

s6

a

s4

a

s2

b

b

a

s5

a

s3

b

b

a

s1

b

b
s1

s2

s6

a

s4

b

a

s3

s5

a

b

1

– We will use these recursive definitions to write systems of equations.

Their recursive definitions

Let Σ = {a, b} and a sequence Y of words over Σ

Y(α):= subsequence of Y beginning with α, the first symbol α removed.

trie(Y)

- If |Y| = 0, trie(Y) = ∅.

- If |Y| = 1, trie(Y) = Y

- If |Y| ≥ 2,

trie(Y)=〈•, trie(Y(a)), trie(Y(b))〉

dst(Y)

- If |Y| = 0, dst(Y) = ∅

- If |Y| ≥ 1, Y := Y \ {First(Y)}

dst(Y)=〈First(Y),dst(Y
(a)

), dst(Y
(b)

)〉

s6

a

s4

a

s2

b

b

a

s5

a

s3

b

b

a

s1

b

b
s1

s2

s6

a

s4

b

a

s3

s5

a

b

1

– We will use these recursive definitions to write systems of equations.

Their recursive definitions

Let Σ = {a, b} and a sequence Y of words over Σ

Y(α):= subsequence of Y beginning with α, the first symbol α removed.

trie(Y)

- If |Y| = 0, trie(Y) = ∅.

- If |Y| = 1, trie(Y) = Y

- If |Y| ≥ 2,

trie(Y)=〈•, trie(Y(a)), trie(Y(b))〉

dst(Y)

- If |Y| = 0, dst(Y) = ∅

- If |Y| ≥ 1, Y := Y \ {First(Y)}

dst(Y)=〈First(Y),dst(Y
(a)

), dst(Y
(b)

)〉

s6

a

s4

a

s2

b

b

a

s5

a

s3

b

b

a

s1

b

b
s1

s2

s6

a

s4

b

a

s3

s5

a

b

1

– We will use these recursive definitions to write systems of equations.

Role of the dst in the Lempel–Ziv Algorithm.

The Lempel-Ziv algorithm is a dictionary-based scheme

– it partitions a sequence into phrases of variable size

– a new phrase is the shortest substring not seen in the past as a phrase

obtained by adding a new symbol to a “Déjà Vu” phrase

The text 11000101011011101

is partitioned into phrases

(ε)− (1)− (10)− (0)− (01)−

(010)− (11)− (011)− (101)

The phrases are inserted in a DST

Role of the dst in the Lempel–Ziv Algorithm.

The Lempel-Ziv algorithm is a dictionary-based scheme

– it partitions a sequence into phrases of variable size

– a new phrase is the shortest substring not seen in the past as a phrase

obtained by adding a new symbol to a “Déjà Vu” phrase

The text 11000101011011101

is partitioned into phrases

(ε)− (1)− (10)− (0)− (01)−

(010)− (11)− (011)− (101)

The phrases are inserted in a DST

Role of the dst in the Lempel–Ziv Algorithm.

The Lempel-Ziv algorithm is a dictionary-based scheme

– it partitions a sequence into phrases of variable size

– a new phrase is the shortest substring not seen in the past as a phrase

obtained by adding a new symbol to a “Déjà Vu” phrase

The text 11000101011011101

is partitioned into phrases

(ε)− (1)− (10)− (0)− (01)−

(010)− (11)− (011)− (101)

The phrases are inserted in a DST

Role of the dst in the Lempel–Ziv Algorithm.

The Lempel-Ziv algorithm is a dictionary-based scheme

– it partitions a sequence into phrases of variable size

– a new phrase is the shortest substring not seen in the past as a phrase

obtained by adding a new symbol to a “Déjà Vu” phrase

The text 11000101011011101

is partitioned into phrases

(ε)− (1)− (10)− (0)− (01)−

(010)− (11)− (011)− (101)

The phrases are inserted in a DST

Parameters for digital trees.

Two types of nodes in the digital structures

– nodes containing data – or nodes containing no data

A full node is a node containing data

(an internal node for the dst, an external node for the trie)

The level of a node: the length of the path from the root to it.

The size is the number of full nodes.

The two main shape parameters:

– Profile bn,k := the number of full nodes at level k in a tree of size n.

– Depth Dn := the level of a randomly selected full node.

b9,0 = 0,

b9,1 = 0

b9,2 = 2,

b9,3 = 1,

b9,4 = 2

b9,5 = 4

b9,0 = 1,

b9,1 = 2,

b9,2 = 3,

b9,3 = 2

b9,4 = 1

Dn=(1/9) [2 · 2 + 3 · 1 + 4 · 2 + 5 · 4] = 3.88 Dn=(1/9) [1 · 2 + 2 · 3 + 3 · 2 + 4 · 1] = 2

Parameters for digital trees.

Two types of nodes in the digital structures

– nodes containing data – or nodes containing no data

A full node is a node containing data

(an internal node for the dst, an external node for the trie)

The level of a node: the length of the path from the root to it.

The size is the number of full nodes.

The two main shape parameters:

– Profile bn,k := the number of full nodes at level k in a tree of size n.

– Depth Dn := the level of a randomly selected full node.

b9,0 = 0,

b9,1 = 0

b9,2 = 2,

b9,3 = 1,

b9,4 = 2

b9,5 = 4

b9,0 = 1,

b9,1 = 2,

b9,2 = 3,

b9,3 = 2

b9,4 = 1

Dn=(1/9) [2 · 2 + 3 · 1 + 4 · 2 + 5 · 4] = 3.88 Dn=(1/9) [1 · 2 + 2 · 3 + 3 · 2 + 4 · 1] = 2

Parameters for digital trees.

Two types of nodes in the digital structures

– nodes containing data – or nodes containing no data

A full node is a node containing data

(an internal node for the dst, an external node for the trie)

The level of a node: the length of the path from the root to it.

The size is the number of full nodes.

The two main shape parameters:

– Profile bn,k := the number of full nodes at level k in a tree of size n.

– Depth Dn := the level of a randomly selected full node.

b9,0 = 0,

b9,1 = 0

b9,2 = 2,

b9,3 = 1,

b9,4 = 2

b9,5 = 4

b9,0 = 1,

b9,1 = 2,

b9,2 = 3,

b9,3 = 2

b9,4 = 1

Dn=(1/9) [2 · 2 + 3 · 1 + 4 · 2 + 5 · 4] = 3.88 Dn=(1/9) [1 · 2 + 2 · 3 + 3 · 2 + 4 · 1] = 2

(III) Probabilistic analysis of the data structures.

Probabilistic study

Input = a sequence X of words (independently) produced by the source.

Set of inputs = the set M? of such sequences X
Aim = the probabilistic shape of Tree (X) for X ∈M?

Two different probabilistic models : Poisson and Bernoulli

– In the Bernoulli model, the cardinality N of X is fixed.

– In the Poisson model, the cardinality N follows a Poisson law of parameter z

Pr[N = k] = e−z
zk

k!
.

The Poisson model is easier to deal with (independence properties).

Thus: begin in the Poisson model and then return to the Bernoulli model...

For a random variable R defined on the set M? of inputs,

there is a relation between the two expectations

P (z) in the Poisson model and Bn in the Bernoulli model,

P (z) = e−z
∑
n≥0

Bn
zn

n!

Probabilistic study

Input = a sequence X of words (independently) produced by the source.

Set of inputs = the set M? of such sequences X
Aim = the probabilistic shape of Tree (X) for X ∈M?

Two different probabilistic models : Poisson and Bernoulli

– In the Bernoulli model, the cardinality N of X is fixed.

– In the Poisson model, the cardinality N follows a Poisson law of parameter z

Pr[N = k] = e−z
zk

k!
.

The Poisson model is easier to deal with (independence properties).

Thus: begin in the Poisson model and then return to the Bernoulli model...

For a random variable R defined on the set M? of inputs,

there is a relation between the two expectations

P (z) in the Poisson model and Bn in the Bernoulli model,

P (z) = e−z
∑
n≥0

Bn
zn

n!

Two steps in the analysis of the profile polynomial bN (u) :=
∑
k≥0

bN,k u
k,

Deal with the expectations of bN (u): Bn(u) [Bernoulli] and P (z, u) [Poisson].

(A) The first (combinatorial) step provides an exact expression for Bn(u)

Expectation P (z, u) Mellin transform Binomial expression of

in the Poisson model =⇒ s 7→ Z(s, u) =⇒ the expectation Bn(u)

of z 7→ P (z, u) in the Bernoulli model

Bn(u) =

n∑
`=2

(−1)`
(
n

`

)
∆(`, u), with ∆(s, u) :=

1

Γ(−s)
Z(−s, u)

(B) The second (analytic) step provides an asymptotic estimate for Bn(u).

– It transforms the binomial expression into an integral expression.

– It transfers the knowledge about singularities of s 7→ ∆(s, u)

into asymptotic estimates of Bn(u)

– It depends on the “tameness” of s 7→ ∆(s, u).

Two steps in the analysis of the profile polynomial bN (u) :=
∑
k≥0

bN,k u
k,

Deal with the expectations of bN (u): Bn(u) [Bernoulli] and P (z, u) [Poisson].

(A) The first (combinatorial) step provides an exact expression for Bn(u)

Expectation P (z, u) Mellin transform Binomial expression of

in the Poisson model =⇒ s 7→ Z(s, u) =⇒ the expectation Bn(u)

of z 7→ P (z, u) in the Bernoulli model

Bn(u) =

n∑
`=2

(−1)`
(
n

`

)
∆(`, u), with ∆(s, u) :=

1

Γ(−s)
Z(−s, u)

(B) The second (analytic) step provides an asymptotic estimate for Bn(u).

– It transforms the binomial expression into an integral expression.

– It transfers the knowledge about singularities of s 7→ ∆(s, u)

into asymptotic estimates of Bn(u)

– It depends on the “tameness” of s 7→ ∆(s, u).

(III) Probabilistic analysis : the combinatorial step.

Profile in the Poisson model

Associate with a source S all its shifted sources S(w).

Profile b
(w)
N,k := the number of full nodes at level k of a digital tree of size N

built on the source S(w)

For a trie of size N

b
(w)
N,k = b

(w·0)
N0,k−1 + b

(w·1)
N1,k−1

b
(w)
N (u) = ub

(w·0)
N0

(u) + ub
(w·1)
N1

(u)

For a dst of size N + 1

b
(w)
N+1,k = b

(w·0)
N0,k−1 + b

(w·1)
N1,k−1

b
(w)
N+1(u) = ub

(w·0)
N0

(u) + ub
(w·1)
N1

(u)

N = N0 +N1

The number Nj of nodes in the j-th subtree (that begin with the symbol j)

follows a Poisson law of parameter qj|w z

System of equations on Poisson expectations.


P (w)(z, u) = z(1− e−z) + u

∑
i∈Σ

P (w.·i)(qi|w z, u) [for trie]

P (w)(z, u) +
d

dz
P (w)(z, u) = z + u

∑
i∈Σ

P (w·i)(qi|wz, u) [for dst]

For each type of tree,

a system of functional equations that involves in both cases

– the mapping z 7→ qz – the shift on words w 7→ w · i

– the derivation d/dz occurs for dst, not for tries.

=⇒ Analysis is more involved for dst.

System of equations on Poisson expectations.


P (w)(z, u) = z(1− e−z) + u

∑
i∈Σ

P (w.·i)(qi|w z, u) [for trie]

P (w)(z, u) +
d

dz
P (w)(z, u) = z + u

∑
i∈Σ

P (w·i)(qi|wz, u) [for dst]

For each type of tree,

a system of functional equations that involves in both cases

– the mapping z 7→ qz – the shift on words w 7→ w · i

– the derivation d/dz occurs for dst, not for tries.

=⇒ Analysis is more involved for dst.

The Mellin transform of the Poisson expectation.

Begin with the equations satisfied by the Poisson expectations,
P (w)(z, u) = z(1− e−z) + u

∑
i∈Σ

P (w.·i)(qi|w z, u) [for trie]

P (w)(z, u) +
d

dz
P (w)(z, u) = z + u

∑
i∈Σ

P (w·i)(qi|wz, u) [for dst]

Consider

– their Mellin transforms Z(w)(s, u) :=

∫ +∞

0

P (w)(x, u)xs−1dx

– then ∆(w)(s, u) :=
1

Γ(−s)Z
(w)(−s, u),

– then the vector ∆(s, u) whose components are ∆(w)(s, u).

We finally obtain a linear system for ∆(s, u)

which involves the transition matrix Ps of the source{
∆T (s, u) −s1 = uPs∆T (s, u) [for trie]

∆D(s, u) −∆D(s+ 1, u) = uPs ∆D(s, u) [for dst]

with 1 = t(1, 1, 1, . . .)

The vectors ∆(s, u) satisfy,

∆T (s, u) = s(I − uPs)
−11

∆D(s, u) = (I − uPs)
−1∆D(s+ 1, u)

For dst, iterate: it appears an infinite product

Q(s, u) := (I − uPs)
−1 · . . . (I − uPs+k)−1

Return to the initial source S [E := t(1, 0, 0, . . .)]

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

An exact expression for ∆(s, u) =⇒ a binomial expression for Bn(u)

The end of the combinatorial step.

The vectors ∆(s, u) satisfy,

∆T (s, u) = s(I − uPs)
−11

∆D(s, u) = (I − uPs)
−1∆D(s+ 1, u)

For dst, iterate: it appears an infinite product

Q(s, u) := (I − uPs)
−1 · . . . (I − uPs+k)−1

Return to the initial source S [E := t(1, 0, 0, . . .)]

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

An exact expression for ∆(s, u) =⇒ a binomial expression for Bn(u)

The end of the combinatorial step.

The vectors ∆(s, u) satisfy,

∆T (s, u) = s(I − uPs)
−11

∆D(s, u) = (I − uPs)
−1∆D(s+ 1, u)

For dst, iterate: it appears an infinite product

Q(s, u) := (I − uPs)
−1 · . . . (I − uPs+k)−1

Return to the initial source S [E := t(1, 0, 0, . . .)]

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

An exact expression for ∆(s, u) =⇒ a binomial expression for Bn(u)

The end of the combinatorial step.

The vectors ∆(s, u) satisfy,

∆T (s, u) = s(I − uPs)
−11

∆D(s, u) = (I − uPs)
−1∆D(s+ 1, u)

For dst, iterate: it appears an infinite product

Q(s, u) := (I − uPs)
−1 · . . . (I − uPs+k)−1

Return to the initial source S [E := t(1, 0, 0, . . .)]

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

An exact expression for ∆(s, u) =⇒ a binomial expression for Bn(u)

The end of the combinatorial step.

(IV) Probabilistic analysis : the analytic step.

Return to the operator Ps and its quasi-inverse (I − uPs)
−1.

Remind: Ps is a matrix whose rows and columns are induced by Σ?.

Its non zero coefficients at row w are located at columns w.i,

and are equal to qsi|w = (pw·i/pw)s

The operator Ps operates on L∞(Σ?) in a natural way:

L∞(Σ?):= the Banach space of the bounded functions X : Σ? → C,

endowed with the sup norm.

Y = Ps[X] ⇐⇒ Y (w) = Ps[X](w) :=
∑
i∈Σ

qsi|wX(w · i)

P := P1 is stochastic, =⇒ a dominant eigenvalue equal to 1.

Need : precise information for the quasi-inverse (I − uPs)
−1

for u close to 1 and <s close to 1.

Related to spectral properties of Ps on a convenient functional space....

Return to the operator Ps and its quasi-inverse (I − uPs)
−1.

Remind: Ps is a matrix whose rows and columns are induced by Σ?.

Its non zero coefficients at row w are located at columns w.i,

and are equal to qsi|w = (pw·i/pw)s

The operator Ps operates on L∞(Σ?) in a natural way:

L∞(Σ?):= the Banach space of the bounded functions X : Σ? → C,

endowed with the sup norm.

Y = Ps[X] ⇐⇒ Y (w) = Ps[X](w) :=
∑
i∈Σ

qsi|wX(w · i)

P := P1 is stochastic, =⇒ a dominant eigenvalue equal to 1.

Need : precise information for the quasi-inverse (I − uPs)
−1

for u close to 1 and <s close to 1.

Related to spectral properties of Ps on a convenient functional space....

Return to the operator Ps and its quasi-inverse (I − uPs)
−1.

Remind: Ps is a matrix whose rows and columns are induced by Σ?.

Its non zero coefficients at row w are located at columns w.i,

and are equal to qsi|w = (pw·i/pw)s

The operator Ps operates on L∞(Σ?) in a natural way:

L∞(Σ?):= the Banach space of the bounded functions X : Σ? → C,

endowed with the sup norm.

Y = Ps[X] ⇐⇒ Y (w) = Ps[X](w) :=
∑
i∈Σ

qsi|wX(w · i)

P := P1 is stochastic, =⇒ a dominant eigenvalue equal to 1.

Need : precise information for the quasi-inverse (I − uPs)
−1

for u close to 1 and <s close to 1.

Related to spectral properties of Ps on a convenient functional space....

Which functional space ?

There are two cases (for the source)

– (i) The pruned graph becomes finite

– (ii) it remains infinite.

There are two cases (for the tree) = the T -case and the D-case.

For (ii) – we have to find a space where the infinite matrix Ps well behaves.

– there is an extra difficulty in the D-case: the infinite product

and we thus need a source with a past

Sources with a past

When the symbol Xn is emitted,

– it “looks at” (from its relative point of view) its neighbors,

– which form its reverse past Xn−1, · · · , X1, X0 in this order

– If w is the previously emitted prefix, it considers its mirror φ(w).

We introduce the g-function defined as g(i · w) := qi|φ(w)

Properties of g for “simple” sources:

Memoryless source ⇐⇒ g constant on each i · Σ?, i ∈ Σ

Markov chains of order 1 ⇐⇒ g constant on each ij · Σ?, i, j ∈ Σ

Markov chains of order k ⇐⇒ g constant on each w · Σ?, w ∈ Σk+1

For “good” sources: one may assume g to be continuous or even Hölder

with respect to the usual “distance” δ on Σ?,

δ(x, y) = 2−γ(x,y) where γ(x, y) the coincidence between x and y

Sources with a past

When the symbol Xn is emitted,

– it “looks at” (from its relative point of view) its neighbors,

– which form its reverse past Xn−1, · · · , X1, X0 in this order

– If w is the previously emitted prefix, it considers its mirror φ(w).

We introduce the g-function defined as g(i · w) := qi|φ(w)

Properties of g for “simple” sources:

Memoryless source ⇐⇒ g constant on each i · Σ?, i ∈ Σ

Markov chains of order 1 ⇐⇒ g constant on each ij · Σ?, i, j ∈ Σ

Markov chains of order k ⇐⇒ g constant on each w · Σ?, w ∈ Σk+1

For “good” sources: one may assume g to be continuous or even Hölder

with respect to the usual “distance” δ on Σ?,

δ(x, y) = 2−γ(x,y) where γ(x, y) the coincidence between x and y

Sources with a past

When the symbol Xn is emitted,

– it “looks at” (from its relative point of view) its neighbors,

– which form its reverse past Xn−1, · · · , X1, X0 in this order

– If w is the previously emitted prefix, it considers its mirror φ(w).

We introduce the g-function defined as g(i · w) := qi|φ(w)

Properties of g for “simple” sources:

Memoryless source ⇐⇒ g constant on each i · Σ?, i ∈ Σ

Markov chains of order 1 ⇐⇒ g constant on each ij · Σ?, i, j ∈ Σ

Markov chains of order k ⇐⇒ g constant on each w · Σ?, w ∈ Σk+1

For “good” sources: one may assume g to be continuous or even Hölder

with respect to the usual “distance” δ on Σ?,

δ(x, y) = 2−γ(x,y) where γ(x, y) the coincidence between x and y

Sources with a past

When the symbol Xn is emitted,

– it “looks at” (from its relative point of view) its neighbors,

– which form its reverse past Xn−1, · · · , X1, X0 in this order

– If w is the previously emitted prefix, it considers its mirror φ(w).

We introduce the g-function defined as g(i · w) := qi|φ(w)

Properties of g for “simple” sources:

Memoryless source ⇐⇒ g constant on each i · Σ?, i ∈ Σ

Markov chains of order 1 ⇐⇒ g constant on each ij · Σ?, i, j ∈ Σ

Markov chains of order k ⇐⇒ g constant on each w · Σ?, w ∈ Σk+1

For “good” sources: one may assume g to be continuous or even Hölder

with respect to the usual “distance” δ on Σ?,

δ(x, y) = 2−γ(x,y) where γ(x, y) the coincidence between x and y

Sources with an infinite past.

If the source is regular enough (with a Hölder g-function for instance),

this finite reverse past can be extended to an infinite reverse past

It admits a stationary measure, and we consider the stationary source.

The (mirror of) transition matrix Ps is then extended into an operator

– which acts on the space H(ΣN) of Hölder functions X : ΣN → C.

– with now good spectral properties

(I − uPs)
−1 is extended to (I − uHs)−1 which is “tame”

for <s and u close to 1.

and the ∆(s, u) related to the two data structures

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

are also “tame”, with a “tameness” of the same type.

Sources with an infinite past.

If the source is regular enough (with a Hölder g-function for instance),

this finite reverse past can be extended to an infinite reverse past

It admits a stationary measure, and we consider the stationary source.

The (mirror of) transition matrix Ps is then extended into an operator

– which acts on the space H(ΣN) of Hölder functions X : ΣN → C.

– with now good spectral properties

(I − uPs)
−1 is extended to (I − uHs)−1 which is “tame”

for <s and u close to 1.

and the ∆(s, u) related to the two data structures

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

are also “tame”, with a “tameness” of the same type.

Sources with an infinite past.

If the source is regular enough (with a Hölder g-function for instance),

this finite reverse past can be extended to an infinite reverse past

It admits a stationary measure, and we consider the stationary source.

The (mirror of) transition matrix Ps is then extended into an operator

– which acts on the space H(ΣN) of Hölder functions X : ΣN → C.

– with now good spectral properties

(I − uPs)
−1 is extended to (I − uHs)−1 which is “tame”

for <s and u close to 1.

and the ∆(s, u) related to the two data structures

∆T (s, u) = s tE (I − uPs)
−1 1, [for trie]

∆D(s, u) = tE (I − uPs)
−1 Q(s+ 1, u) ·Q(2, u)−1 1 [for dst]

are also “tame”, with a “tameness” of the same type.

(V) Probabilistic analysis : the result.

Main results

Consider a stationary tame source S,

and a digital tree built on n words independently drawn from the source.

We consider a trie (type T) or a dst (type D), with X ∈ {T,D}

The mean and the variance of the depth Dn satisfy

E[Dn] = µ log n+ µX +R(n)

V[Dn] = ν log n+ νX +R(n)

– The dominant constants µ, ν only depend on the source, not on the tree type

– The subdominant constants µX , νX depend on the source and the tree

The inequality µT > µD holds.

– The remainder terms R(n) depend on the tameness of the source.

When the source S is not an unbiased memoryless source, one has ν 6= 0

and the depth Dn asymptotically follows a Gaussian law

Dn − E[Dn]√
V[Dn]

d−→ N (0, 1) [speed of convergence O(logn)−1/2].

Main results

Consider a stationary tame source S,

and a digital tree built on n words independently drawn from the source.

We consider a trie (type T) or a dst (type D), with X ∈ {T,D}

The mean and the variance of the depth Dn satisfy

E[Dn] = µ log n+ µX +R(n)

V[Dn] = ν log n+ νX +R(n)

– The dominant constants µ, ν only depend on the source, not on the tree type

– The subdominant constants µX , νX depend on the source and the tree

The inequality µT > µD holds.

– The remainder terms R(n) depend on the tameness of the source.

When the source S is not an unbiased memoryless source, one has ν 6= 0

and the depth Dn asymptotically follows a Gaussian law

Dn − E[Dn]√
V[Dn]

d−→ N (0, 1) [speed of convergence O(logn)−1/2].

Main results

Consider a stationary tame source S,

and a digital tree built on n words independently drawn from the source.

We consider a trie (type T) or a dst (type D), with X ∈ {T,D}

The mean and the variance of the depth Dn satisfy

E[Dn] = µ log n+ µX +R(n)

V[Dn] = ν log n+ νX +R(n)

– The dominant constants µ, ν only depend on the source, not on the tree type

– The subdominant constants µX , νX depend on the source and the tree

The inequality µT > µD holds.

– The remainder terms R(n) depend on the tameness of the source.

When the source S is not an unbiased memoryless source, one has ν 6= 0

and the depth Dn asymptotically follows a Gaussian law

Dn − E[Dn]√
V[Dn]

d−→ N (0, 1) [speed of convergence O(logn)−1/2].

Main results

Consider a stationary tame source S,

and a digital tree built on n words independently drawn from the source.

We consider a trie (type T) or a dst (type D), with X ∈ {T,D}

The mean and the variance of the depth Dn satisfy

E[Dn] = µ log n+ µX +R(n)

V[Dn] = ν log n+ νX +R(n)

– The dominant constants µ, ν only depend on the source, not on the tree type

– The subdominant constants µX , νX depend on the source and the tree

The inequality µT > µD holds.

– The remainder terms R(n) depend on the tameness of the source.

When the source S is not an unbiased memoryless source, one has ν 6= 0

and the depth Dn asymptotically follows a Gaussian law

Dn − E[Dn]√
V[Dn]

d−→ N (0, 1) [speed of convergence O(logn)−1/2].

Precise results

E[Dn] = µ logn+ µX +R(n), V[Dn] = ν logn+ νX +R(n)

Dominant terms Types of tameness Remainder terms

µ = − 1

λ′(1)
S-tame O(n−δ)

ν =
λ′(1)2 − λ′′(1)

λ′(1)3
H-tame O (exp[−(logn)ρ])

P -tame ψ(n) +O(n−δ)

– λ(s) is the dominant eigenvalue of the source (I −Hs)−1 ; 1/(1− λ(s))

– δ and ρ: related to the geometry of the tameness

– ψ(n): a periodic function of logn

Conclusion

Description of the interaction between the source and the data structures,

– via the ∆(s, u) functions called the mixed Dirichlet series.

– precise comparison between the two structures (trie, dst).

Other instances of this interaction:

Analyses of sorting or searching algorithms when they deal with words,

with the cost ”number of symbols that are used for comparing words”.

Open question:

Is it possible to return to the analysis of the Lempel-Ziv algorithm?

Conclusion

Description of the interaction between the source and the data structures,

– via the ∆(s, u) functions called the mixed Dirichlet series.

– precise comparison between the two structures (trie, dst).

Other instances of this interaction:

Analyses of sorting or searching algorithms when they deal with words,

with the cost ”number of symbols that are used for comparing words”.

Open question:

Is it possible to return to the analysis of the Lempel-Ziv algorithm?

Conclusion

Description of the interaction between the source and the data structures,

– via the ∆(s, u) functions called the mixed Dirichlet series.

– precise comparison between the two structures (trie, dst).

Other instances of this interaction:

Analyses of sorting or searching algorithms when they deal with words,

with the cost ”number of symbols that are used for comparing words”.

Open question:

Is it possible to return to the analysis of the Lempel-Ziv algorithm?

What happens on the left of the vertical line <s = 1?

It is important for the analysis to deal with a region R where (I − P̂s)
−1

is tame : analytic (except for s = 1) and of polynomial growth (=s→∞)

Different possible regions R where (I − P̂s)
−1 is tame.

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

1− σ ≤ a 1− σ ≤ t−α

What happens on the left of the vertical line <s = 1?

It is important for the analysis to deal with a region R where (I − P̂s)
−1

is tame : analytic (except for s = 1) and of polynomial growth (=s→∞)

Different possible regions R where (I − P̂s)
−1 is tame.

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

1− σ ≤ a 1− σ ≤ t−α

What happens on the left of the vertical line <s = 1?

It is important for the analysis to deal with a region R where (I − P̂s)
−1

is tame : analytic (except for s = 1) and of polynomial growth (=s→∞)

Different possible regions R where (I − P̂s)
−1 is tame.

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

1− σ ≤ a 1− σ ≤ t−α

Possible tameness regions for a simple source

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

For which simple sources do these different situations occur?

For memoryless sources relative to probabilities (p1, p2, . . . , pr)

– S1 is impossible

– S3 occurs when all the ratios log pi/log pj are rational

– S2 occurs if there exists a ratio log pi/log pj

which is “diophantine” [badly approximable by rationals]

Possible tameness regions for a simple source

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

For which simple sources do these different situations occur?

For memoryless sources relative to probabilities (p1, p2, . . . , pr)

– S1 is impossible

– S3 occurs when all the ratios log pi/log pj are rational

– S2 occurs if there exists a ratio log pi/log pj

which is “diophantine” [badly approximable by rationals]

Possible tameness regions for a simple source

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

For which simple sources do these different situations occur?

For memoryless sources relative to probabilities (p1, p2, . . . , pr)

– S1 is impossible

– S3 occurs when all the ratios log pi/log pj are rational

– S2 occurs if there exists a ratio log pi/log pj

which is “diophantine” [badly approximable by rationals]

For which Lipschitz, stationary, smooth sources do these different situations occur?

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

Geometric condition Arithmetic condition Periodicity condition

– S1: When ? Find some equivalent of the UNI Condition

‘the branches are not too often of the same shape” (??)

– S3: only when the source is conjugated to a simple source.

– S2: when the following condition [DIOP] holds

“there exists two cycles Ci and Cj
for which the ratio log p(Ci)/ log p(Cj) is “diophantine”

For which Lipschitz, stationary, smooth sources do these different situations occur?

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

Geometric condition Arithmetic condition Periodicity condition

– S1: When ? Find some equivalent of the UNI Condition

‘the branches are not too often of the same shape” (??)

– S3: only when the source is conjugated to a simple source.

– S2: when the following condition [DIOP] holds

“there exists two cycles Ci and Cj
for which the ratio log p(Ci)/ log p(Cj) is “diophantine”

For which Lipschitz, stationary, smooth sources do these different situations occur?

Situation 1 Situation 2 Situation 3

Vertical strip Hyperbolic region Vertical strip with holes

Geometric condition Arithmetic condition Periodicity condition

– S1: When ? Find some equivalent of the UNI Condition

‘the branches are not too often of the same shape” (??)

– S3: only when the source is conjugated to a simple source.

– S2: when the following condition [DIOP] holds

“there exists two cycles Ci and Cj
for which the ratio log p(Ci)/ log p(Cj) is “diophantine”

