The Separation Problem:
 An introduction and transfer theorems

T. Place, L. van Rooijen, Marc Zeitoun

LaBRI, Université Bordeaux, CNRS

SDA2 2015, MLV - 10/4/2015

Framework and Motivations

Structures

Descriptive Formalism

First-Order Logic (FO)
Piecewise Testable ($\mathcal{B} \Sigma_{1}$)
2-Variables FO ($\mathbf{F O}_{2}$)
Fragments $\Sigma_{i}, \mathcal{B} \Sigma_{i}$
Locally Threshold Testable (LTT)

Framework and Motivations

Structures
Descriptive Formalism
Express Properties

Framework and Motivations

Descriptive Formalism

Express Properties

For this talk

First-order logic and MSO on words

First-order logic, with only the linear order ' $<$ '.

$$
a b b b c a a a c a
$$

First-order logic and MSO on words

First-order logic, with only the linear order ' $<$ '.

$$
\begin{aligned}
& a b b b c a a a c a \\
& 0123456789
\end{aligned}
$$

- A word is a sequence of labeled positions.
- Positions can be quantified: $\exists x \varphi$.
- Unary predicates $a(x), b(x), c(x)$ testing the label of position x.
- One binary predicate: the linear-order $x<y$.

First-order logic and MSO on words

First-order logic, with only the linear order ' $<$ '.

$$
\begin{aligned}
& a b b b c a a \operatorname{c} a \\
& 0123456789
\end{aligned}
$$

- A word is a sequence of labeled positions.
- Positions can be quantified: $\exists x \varphi$.
- Unary predicates $a(x), b(x), c(x)$ testing the label of position x.
- One binary predicate: the linear-order $x<y$.

Example: every a comes after some b

$$
\forall x a(x) \Rightarrow \exists y(b(y) \wedge(y<x))
$$

First-order logic and MSO on words

First-order logic, with only the linear order ' $<$ '.

$$
\begin{aligned}
& a b b b c a a a c a \\
& 0123456789
\end{aligned}
$$

- A word is a sequence of labeled positions.
- Positions can be quantified: $\exists x \varphi$.
- Unary predicates $a(x), b(x), c(x)$ testing the label of position x.
- One binary predicate: the linear-order $x<y$.

Example: every a comes after some b

$$
\forall x a(x) \Rightarrow \exists y(b(y) \wedge(y<x))
$$

- MSO Logic: idem + quantify over sets of positions $X, Y, Z \ldots$

Regular languages: a robust class

$$
L=(a a)^{*}
$$

Regular languages: a robust class a, b

$$
L=(a a)^{*}
$$

$\forall x a(x)$
$\exists X[\operatorname{even}(X) \wedge$

$$
\forall x(x \in X)]
$$

Regular languages: a robust class a, b

$$
L=(a a)^{*}
$$

$\forall x a(x)$
$\exists X[\operatorname{even}(X)$

$$
\forall x(x \in X)]
$$

	1	2	3
$\underline{\varepsilon}$	1	2	3
\underline{a}	2	1	3
\underline{b}	3	3	3

Regular languages: a robust class a, b

$$
L=(a a)^{*}
$$

$\forall x a(x)$
$\exists X[\operatorname{even}(X)$

$$
\forall x(x \in X)]
$$

Regular languages: a robust class a, b

$$
L=(a a)^{*}
$$

$\forall x a(x)$
$\exists X[\operatorname{even}(X)$

$$
\forall x(x \in X)]
$$

Regular languages: a robust class a, b

$$
L=(a a)^{*}
$$

$\forall x a(x)$
$\exists X[\operatorname{even}(X)$

$$
\forall x(x \in X)]
$$

	1	2	3			
$\underline{\varepsilon}$	1	2	3	A^{*}		
\underline{a}	2	1	3			
\underline{b}	3	3	3		\quad	
:---						
$\simeq \mathbb{Z} / 2 \mathbb{Z} \cup\{0\}$						

$$
L=\alpha^{-1}(\{\varepsilon\})
$$

Kleene-Büchi-Elgot-Trakhtenbrot Theorem

- Generic.
- Easy.

Why look at FO and fragments?

- Simple formulas are better (algorithmically).
- Some parameters making formulas complex:
- Second order quantification,
- Number of quantifier alternations,
- Allowed predicates,
- Number of variable names.

Why look at FO and fragments?

- Simple formulas are better (algorithmically).
- Some parameters making formulas complex:
- Second order quantification,
- Number of quantifier alternations,
- Allowed predicates,
- Number of variable names.

Membership Problem for a fragment \mathcal{F}

- INPUT

A language L.

- QUESTION Is L expressible in \mathcal{F} ?

First problem: Membership

Membership problem for a fragment \mathcal{F}

- INPUT A language L.
- QUESTION Is L expressible in \mathcal{F} ?

First problem: Membership

Membership problem for a fragment \mathcal{F}

- INPUT
- QUESTION Is L expressible in \mathcal{F} ?

First problem: Membership

Membership problem for a fragment \mathcal{F}

- INPUT A language L.
- QUESTION Is L expressible in \mathcal{F} ?

Schützenberger'65, McNaughton and Papert'71

For L a regular language, the following are equivalent:

- L is FO-definable.
- The syntactic monoid of L satisfies $u^{\omega+1}=u^{\omega}$.

Repriated from Inyonmation and ControL, Volume 8, No. 2, April 1005 Copyright (3) by Academic Presa Inc.

INFOMMATION AND CONTROL 8, 190-194 (1965)

On Finite Monoids Having Only Trivial Subgroups

M. P. Schützenberger

An alternative definition is given for a family of subsets of a free monoid that has been considered by Trahtenbrot and by MeNaughton.

I. INTRODUCTION

Let X^{*} be the free monoid generated by a fixed set X and let Q be the least family of subsets of X^{*} that satisfies the following conditions (K1) and (K2):
(K1). $X^{*} \in \mathrm{Q} ;\{e\} \in \mathrm{Q}$ (e is the neutral element of $\left.X^{*}\right) ; X^{\prime} \in \mathrm{Q}$ for any $X^{\prime} \subset X$.
(K2). If A_{1} and A_{2} belong to Q , then $A_{1} \cup A_{2}$,

$$
A_{1} \backslash A_{2}\left(=\left\{f \in A_{1}: f \in A_{2}\right\}\right)
$$

and $A_{1} \cdot A_{2}\left(=\left\{f^{\prime} \in X^{*}: f \in A_{1} ; f^{\prime} \in A_{2}\right\}\right)$ belong to Q .
With different notations, Q has been studied in Trahtenbrot (1958) and, within a wider context, in McNaughton (1960). According to Eggan (1963), Q contains, for suitable X, sets of arbitrarily large starheight (cf. Section IV below).
For each natural number n, let $\Gamma(n)$ denote the family of all epimorphisms γ of X^{*} such that Card $\gamma X^{*} \leqq n$ and that γX^{*} has only trivial subgroups (i.e., $\gamma f^{n}=\gamma f^{n+1}$ for all $f \in X^{*}$, cf. Miller and Clifford (1956)).

Main Property. Q is identical with the union Q^{\prime} over all n of the families $Q^{\prime}(n)=\left\{A \subset X^{*}: \gamma^{-1} \gamma A=A ; \gamma \in \Gamma(n)\right\}$

$$
\left(=\left\{\gamma^{-1} M^{\prime}: M^{\prime} \subset \gamma X^{*} ; \gamma \in \Gamma(n)\right\}\right)
$$

As an application, if $A, A^{\prime} \subset X^{*}$ are such that for at least one triple $f, f^{\prime}, f^{\prime \prime} \in X^{*}$, both $\left\{n \in \mathbf{N}: f^{\prime} f^{\prime \prime} f^{\prime \prime} \in A\right\}$ and $\left\{n \in \mathbf{N}: f^{\prime} f^{\prime \prime} f^{\prime \prime} \in A^{\prime}\right\}$ are infinite sets of integers, we can conclude that no $B \in \mathrm{Q}$ satisfies $A \subset B$ and $A^{\prime} \subset X^{*} \backslash B$.

Maîtres et amis

Édition des culvres complètes de Marcel-Paul Schitzenberger

Marcel-Paul Schützenberger (1920-1996) est le fondateur de l'informatique théorique en France. Membre de l'Académie des Sciences, il a eu un rayonnement international important en mathématiques et en informatique. De nombreux membres de l'Institut Gaspard-Monge sont ses anciens élèves ou disciples, ou de ses descendants. Il continue à influencer directement ou indirectement de nombreuses recherches en cours.

Jean Berstel, Alain Lascoux et Dominique Perrin ont entrepris, épaulés par les anciens élèves de Marcel-Paul Schützenberger, une édition de ses cuuvres complètes. Elle se présente sous la forme de treize volumes, chacun d'environ 250 pages.
Dans un deuxième temps, une sélection de ses cuvres choisies en mathématiques et en informatique suivra, et sera proposée à la publication d'une société savante.

Marcel-Paul Schútzenberger, Oberwolfach (1975)

Coauteurs

Noam Chomsky

Steven
Sherman

André
Lichnerowicz

Blanchard

Articles fondateurs

Contact : Jean.Berstel, Alain.Lascoux, Dominique.Perrin

Euvres complètes
(13 solumes)

Éditeurs

http://igm.univ-mlv.fr/~berstel/Schutzenberger/

Quantifier alternation

Level i : Σ_{i}

For all i, a Σ_{i} formula is

$$
\underbrace{\exists x_{1}, \ldots, x_{n_{1}} \forall y_{1}, \ldots, y_{n_{2}} \ldots \ldots}_{i \text { blocks (starting with } \exists \text {) }} \underbrace{\varphi(\bar{x}, \bar{y}, \ldots)}_{\text {quantifier-free }}
$$

Quantifier alternation

Level i : Σ_{i}

For all i, a Σ_{i} formula is

$$
\underbrace{\exists x_{1}, \ldots, x_{n_{1}} \forall y_{1}, \ldots, y_{n_{2}} \ldots \ldots}_{i \text { blocks (starting with } \exists \text {) }} \underbrace{\varphi(\bar{x}, \bar{y}, \ldots)}_{\text {quantifier-free }}
$$

Σ_{i} is not closed under complement \Rightarrow we get two other classes:

Level i : Π_{i}

Negation of a Σ_{i} formula:

$$
\underbrace{\forall x_{1}, \ldots, x_{n_{1}} \exists y_{1}, \ldots, y_{n_{2}} \cdots}_{i \text { blocks (starting with } \forall \text {) }} \varphi
$$

Level i : $\mathcal{B} \Sigma_{i}$
Boolean combinations of Σ_{i} (and Π_{i}) formulas.

FO Quantifier alternation hierarchy

State of the art in 2013

Several Hierarchies

- A fragment is obtained by restricting
- Number of quantifier alternations,
- Allowed predicates,
- Number of variable names.
- $\mathrm{FO}(<), \mathrm{FO}(<,+1), \mathrm{FO}(<,+1$, min, max $)$: same expressiveness.

With restricted alternation, this yields distinct fragments.

$$
\Sigma_{1}(<), \quad \Sigma_{1}(<,+1), \text { and } \Sigma_{1}(<,+1, \text { min }, \max)
$$

Why we want more than membership

If the membership answer for L

- is YES
- All "subparts" of the minimal automaton of L are \mathcal{F}-definable.
- is NO, then even if \mathcal{F} can talk about L :
- We have almost no information.
- Eg, for FO, defining L requires differentiating some u^{ω} and $u^{\omega+1}$.

Beyond membership: Separation

Decide the following problem:
Take 2 regular languages L_{1}, L_{2}

Beyond membership: Separation

Decide the following problem:
Take 2 regular languages L_{1}, L_{2}

Beyond membership: Separation

Decide the following problem:

Beyond membership: Separation

Membership can be formally reduced to separation

Take 2 regular languages L_{1}, L_{2}

Can L_{1} be separated from L_{2} with an \mathcal{F} formula?

Beyond membership: Separation

Membership can be formally reduced to separation

Take 2 regular languages L_{1}, L_{2}

Can L_{1} be separated from L_{2} with an \mathcal{F} formula?

\mathcal{F}-definable

Motivations for separation

- More general: able to extract information for all languages.
- Cannot start from canonical object for the (unknown) separator.
- Therefore, may give insight to solve harder problems.

Motivations for separation

- More general: able to extract information for all languages.
- Cannot start from canonical object for the (unknown) separator.
- Therefore, may give insight to solve harder problems.
- 2 transfer results:
- decidability of separation for level Σ_{i} of the quantifier alternation hierarchy entails decidability of membership for Σ_{i+1}.
- decidability of separation preserved when enriching \mathcal{F} with +1 .

Motivations for separation

- More general: able to extract information for all languages.
- Cannot start from canonical object for the (unknown) separator.
- Therefore, may give insight to solve harder problems.
- 2 transfer results:
- decidability of separation for level Σ_{i} of the quantifier alternation hierarchy entails decidability of membership for Σ_{i+1}.
- decidability of separation preserved when enriching \mathcal{F} with +1 .
\Rightarrow We shouldn't restrict ourselves to membership.

Related work

- Separation already considered in an algebraic framework.
- First result by K. Henckell '88 for FO, then for other fragments.
- Transfer $\mathcal{F} \rightarrow \mathcal{F}[+1]:$ H. Straubing '85, B. Steinberg '01 (sep.).
- Purely algebraic proofs, hiding combinatorial \& logical intuitions.
- Want: Simpler, combinatorial proofs.

An already known result for FO: Henckell '88

- Simple algorithm.
- Easy correctness proof.
- Intricate completeness proof.

Guide to the paper

Chapter 1. Elementary definitions and notation should be omitted on first reading and used as a reference as needed.

Chapter 2. The Pl-functor defines pointlike sets in a general setting and shows by an abstract compactness argument that $\mathrm{Pl}(S)$ can be computed by an aperiodic semigroup.

Chapter 3. Definition of $C^{\omega}(S)$ and H^{ω} defines $C^{\omega}(S)$, a collection of pointlike sets, in a constructive manner. H^{ω} is the 'blow-up-operator' that we will use in Chapter 5 to show $C^{\omega}(S)=\mathrm{Pl}(S)$. It has some examples in the end.

Chapter 4. The Rhodes-expansion defines the tools needed in Chapter 5.
Chapter 5. $C^{\omega}(S)=\mathrm{Pl}(S)$ shows the main result by actually constructing a relation $S \xrightarrow{R} \mathrm{CP}(S)$ computing $C^{\omega}(S)$ with $\mathrm{CP}(S)$ aperiodic. It uses H^{ω}, generalized to \hat{H}^{ω} on $\hat{C}^{\omega}(S)$ 'to get rid of groups by blowing up'.

A toy example: Separation for $\mathrm{FO}(=)$

- $\mathrm{FO}(=)$ can just count occurrences of letters, up to threshold.
- Example: at least 2 's: $\exists x, y \quad x \neq y \wedge a(x) \wedge a(y)$.
- $\mathrm{FO}(=)$ can express properties like

$$
\text { at least } 2 a \text { 's, no more than } 3 b \text { 's, exactly } 1 c .
$$

- How to decide separation for $\mathrm{FO}(=)$?

A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of u.

$$
\pi(a a b a d)=(3,1,0,1)
$$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.

A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of u.

$$
\pi(a a b a d)=(3,1,0,1)
$$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.

Fact

Languages L_{1}, L_{2} are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists u_{1} \in L_{1} \exists u_{2} \in L_{2}, \quad \pi\left(u_{1}\right)={ }_{d} \pi\left(u_{2}\right)
$$

A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of u.

$$
\pi(a a b a d)=(3,1,0,1)
$$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.

Fact

Languages L_{1}, L_{2} are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists u_{1} \in L_{1} \exists u_{2} \in L_{2}, \quad \pi\left(u_{1}\right)={ }_{d} \pi\left(u_{2}\right) .
$$

Proof. \Rightarrow The $\mathrm{FO}(=)$ language $\left\{u \mid \pi(u) \in_{d} \pi\left(L_{1}\right)\right\}$ contains L_{1}. Since L_{1}, L_{2} are not $\mathrm{FO}(=)$-separable, it intersects L_{2}.

A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of u.

$$
\pi(a a b a d)=(3,1,0,1)
$$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.

Fact

Languages L_{1}, L_{2} are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists u_{1} \in L_{1} \exists u_{2} \in L_{2}, \quad \pi\left(u_{1}\right)={ }_{d} \pi\left(u_{2}\right) .
$$

Proof. \Rightarrow The $\mathrm{FO}(=)$ language $\left\{u \mid \pi(u) \in_{d} \pi\left(L_{1}\right)\right\}$ contains L_{1}. Since L_{1}, L_{2} are not $\mathrm{FO}(=)$-separable, it intersects L_{2}.
\Leftarrow Assume there is an $\mathrm{FO}(=)$-separator K, say of threshold d.
Then $L_{1} \subseteq K \Rightarrow u_{1} \in K \Rightarrow u_{2} \in K$, impossible since $u_{2} \in L_{2}$.

A toy example: Separation for $\mathrm{FO}(=)$

Fact

Languages L_{1}, L_{2} are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists \vec{x}_{1} \in \pi\left(L_{1}\right) \exists \vec{x}_{2} \in \pi\left(L_{2}\right), \quad \vec{x}_{1}={ }_{d} \vec{x}_{2} .
$$

Decidability of $\mathrm{FO}(=)$-separation is then implied by

- Parikh's Theorem, and
- Decidability of Presburger logic.

Separation for $\mathrm{FO}(=,+1)$

- $\mathrm{FO}(=)$ can just count occurrences of letters up to a threshold.
- $\mathrm{FO}(=,+1)$ can count occurrences of infixes up to a threshold.

There exist at least 2 occurrences of abba and the word start with ba.

- For membership, decidability follows from a delay theorem: To test $\mathrm{FO}(=,+1)$-definability, look at infixes of bounded size.

Separation for $\mathrm{FO}(=,+1)$

- $\mathrm{FO}(=)$ can just count occurrences of letters up to a threshold.
- $\mathrm{FO}(=,+1)$ can count occurrences of infixes up to a threshold.

There exist at least 2 occurrences of abba and the word start with ba.

- For membership, decidability follows from a delay theorem: To test $\mathrm{FO}(=,+1)$-definability, look at infixes of bounded size.
- Membership proof not trivial. Transferring separability is easier.

FO Quantifier alternation hierarchy

State of the art in 2013

FO Quantifier alternation hierarchy

State of the art in 2013

FO Quantifier alternation hierarchy

(Almeida,Z.)'97
(Czerwinski,Martens,Masopust)'13
(Place,van Rooijen,Z.)'13
Recent progress
New Separation Knowledge

FO Quantifier alternation hierarchy

(Almeida,Z.)'97
(Czerwinski,Martens,Masopust)'13
(Place,van Rooijen,Z.)'13
New Separation Knowledge

FO Quantifier alternation hierarchy

(Almeida,Z.)'97
(Czerwinski,Martens,Masopust)'13
(Place,van Rooijen,Z.)'13

FO Quantifier alternation hierarchy

(Almeida,Z.)'97
(Czerwinski,Martens,Masopust)'13
(Place,van Rooijen,Z.)'13

New Membership Knowledge

By relying on Σ_{2}-Analysis, one can prove decidable characterizations for $\mathcal{B} \Sigma_{2}, \Delta_{3}, \Sigma_{3}$ and Π_{3}.

FO Quantifier alternation hierarchy

(Almeida,Z.)'97

(Czerwinski,Martens,Masopust)'13
(Place,van Rooijen,Z.)'13

New Membership Knowledge
T. Place, LICS'15

Separation for Σ_{3} (hard)
Decidability for $\Delta_{4}, \Sigma_{4}, \Pi_{4}$
Still open for $\mathcal{B} \Sigma_{3}$

Summary of recent results

Specific results

- Separation reproved for FO, proved for Σ_{2}, Σ_{3}.
- Membership for $\mathcal{B} \Sigma_{2}$ (specific proof).

Transfer results

- Separation of Σ_{n} entails membership for Σ_{n+1}.
- Separation for \mathcal{F} entails separation for $\mathcal{F}[+1]$.

Proofs techniques

FO is hard, let's make it easy!

Quantifier rank of a formula: Nested depth of quantifiers.

$$
\exists x c(x) \wedge \forall x \exists y(a(x) \Longrightarrow \exists z(x<z<y \wedge b(y))) \quad \text { rank } 3
$$

If k fixed: finitely many FO properties of rank k
\Rightarrow Separation is easy (test them all).

Proofs techniques

FO is hard, let's make it easy!

Quantifier rank of a formula: Nested depth of quantifiers.

$$
\exists x c(x) \wedge \forall x \exists y(a(x) \Longrightarrow \exists z(x<z<y \wedge b(y))) \quad \text { rank } 3
$$

If k fixed: finitely many FO properties of rank k
\Rightarrow Separation is easy (test them all).
k-equivalence for $\mathbf{F O}$
Let w_{1}, w_{2} be words:
$w_{1} \approx_{k} w_{2}$ iff w_{1}, w_{2} satisfy the same formulas of rank k
All FO properties of rank k are unions of classes of \approx_{k}.

Fixed Quantifier Rank k

Let's add the \approx_{k}-classes

Fixed Quantifier Rank k

Separable with rank k iff no \approx_{k}-class intersects both languages
For full FO we want to know if there exists such a k
\Rightarrow Compute a 'limit' for \approx_{k}.

Fixed Quantifier Rank k

Separable with rank k iff no \approx_{k}-class intersects both languages
For full FO we want to know if there exists such a k \Rightarrow Compute a 'limit' for \approx_{k}.

When k gets larger, \approx_{k} is refined but it never ends

Fixed Quantifier Rank k

Separable with rank k iff no \approx_{k}-class intersects both languages
For full FO we want to know if there exists such a k \Rightarrow Compute a 'limit' for \approx_{k}.

When k gets larger, \approx_{k} is refined but it never ends

Fixed Quantifier Rank k

Separable with rank k iff no \approx_{k}-class intersects both languages
For full FO we want to know if there exists such a k \Rightarrow Compute a 'limit' for \approx_{k}.

When k gets larger, \approx_{k} is refined but it never ends

Fixed Quantifier Rank k

Separable with rank k iff no \approx_{k}-class intersects both languages
For full FO we want to know if there exists such a k \Rightarrow Compute a 'limit' for \approx_{k}.

When k gets larger, \approx_{k} is refined but it never ends

Fixed Quantifier Rank k

Separable with rank k iff no \approx_{k}-class intersects both languages
For full FO we want to know if there exists such a k \Rightarrow Compute a 'limit' for \approx_{k}.

When k gets larger, \approx_{k} is refined but it never ends

Idea. Abstract \approx_{k} on a finite monoid recognizing both L_{1} and L_{2}.

"Pair" analysis

Fix $\alpha: A^{*} \rightarrow M$. Compute $\mathbf{I}_{k}[\alpha], k$-indistinguishable pairs.
FO-indistinguishable pairs for $\alpha: A^{*} \rightarrow M$
$\left(s_{1}, s_{2}\right) \in \mathbf{I}_{k}[\alpha]$ if

\exists| w_{1} | \approx_{k} | w_{2} |
| :---: | :---: | :---: |
| $\left.\alpha\right\|_{s_{1}}$ | | |
| | | |
| s_{2} | | |

- Smaller and smaller sets: $\mathbf{I}_{k+1}[\alpha] \subseteq \mathbf{I}_{k}[\alpha]$.
- Limit set: $\mathbf{I}[\alpha]=\bigcap_{k} \mathbf{I}_{k}[\alpha]$.
- Computing these pairs solves separation:

$$
\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha] \quad \Longleftrightarrow \quad \alpha^{-1}\left(s_{1}\right) \text { and } \alpha^{-1}\left(s_{2}\right) \text { not separable }
$$

"Pair" analysis

- Smaller and smaller sets: $\mathbf{I}_{k+1}[\alpha] \subseteq \mathbf{I}_{k}[\alpha]$
- Limit set: $\mathbf{I}[\alpha]=\bigcap_{k} \mathbf{I}_{k}[\alpha]$.

What have we gained?
We work with finite semigroups \Rightarrow the refinement stabilizes.

"Pair" analysis

- Smaller and smaller sets: $\mathbf{I}_{k+1}[\alpha] \subseteq \mathbf{I}_{k}[\alpha]$
- Limit set: $\mathbf{I}[\alpha]=\bigcap_{k} \mathbf{I}_{k}[\alpha]$.

What have we gained?

We work with finite semigroups \Rightarrow the refinement stabilizes.

(2)It may happen that $\mathbf{I}_{k+1}[\alpha]=\mathbf{I}_{k}[\alpha]$ before stabilization. It may happen that

- $(r, s) \in \mathbb{I}[\alpha]$,
- $(s, t) \in \mathbf{I}[\alpha]$,
- but $(r, t) \notin \boldsymbol{\|}[\alpha]$ (no transitivity).

The Separation Criterion

Separation Criterion

L_{1}, L_{2} recognized by $\alpha: A^{*} \rightarrow M$ are not separable iff
there are accepting elements $s_{1}, s_{2} \in M$ for $L_{1}, L_{2} \mathbf{s . t .}\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha]$.

The Separation Criterion

Separation Criterion

L_{1}, L_{2} recognized by $\alpha: A^{*} \rightarrow M$ are not separable iff
there are accepting elements $s_{1}, s_{2} \in M$ for $L_{1}, L_{2} \mathbf{s . t .}\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha]$.

Computing $\mathbf{I}[\alpha]$ suffices to solve separation.

Two approaches to compute $\mathbf{I}[\alpha]$

Brute-force

- k fixed: computing $\mathbf{I}_{k}[\alpha]$ easy.
- $\mathbf{I}[\alpha]=\mathbf{I}_{k}[\alpha]$ for some k.
- \Rightarrow Prove a bound $k=f(\alpha)$, Compute $\mathbf{I}_{k}[\alpha]$.

Algorithm

Algorithm bypassing the bound k : Direct fixpoint computation of $\mathbf{I}[\alpha]$.

Two approaches to compute $\mathbf{I}[\alpha]$

Brute-force

- k fixed: computing $\mathbf{I}_{k}[\alpha]$ easy.
- $\mathbf{I}[\alpha]=\mathbf{I}_{k}[\alpha]$ for some k.
- \Rightarrow Prove a bound $k=f(\alpha)$, Compute $\mathbf{I}_{k}[\alpha]$.

Algorithm

Algorithm bypassing the bound k : Direct fixpoint computation of $\mathbf{I}[\alpha]$.

We use approach 2.

A first (non complete) algorithm computing $\mathbf{I}[\alpha]$

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
$w \approx_{k} w$

A first (non complete) algorithm computing $\mathbf{I}[\alpha]$

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.
$w \approx_{k} w$

1. Trivial pairs: for all $w \in A^{*}(\alpha(w), \alpha(w)) \in \mathbf{I}[\alpha]$

A first (non complete) algorithm computing $\mathbf{I}[\alpha]$

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1. Trivial pairs: for all $w \in A^{*}(\alpha(w), \alpha(w)) \in \mathbf{I}[\alpha]$

A first (non complete) algorithm computing $\mathbf{I}[\alpha]$

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1. Trivial pairs: for all $w \in A^{*}(\alpha(w), \alpha(w)) \in \mathbf{I}[\alpha]$
2. Operation $\bullet:\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha]$ and $\left(t_{1}, t_{2}\right) \in \mathbf{I}[\alpha] \Rightarrow\left(s_{1} t_{1}, s_{2} t_{2}\right) \in \mathbf{I}[\alpha]$

A first (non complete) algorithm computing $\mathbf{I}[\alpha]$

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

$\left[\right.$| 3rd Property of FO | |
| :---: | :---: |
| $\forall k \exists n \forall w_{1}, w_{2} \in A^{*} \quad w_{1} \approx_{k} w_{2} \Rightarrow\left(w_{1}\right)^{n} \approx_{k}\left(w_{2}\right)^{n+1}$ | |

1. Trivial pairs: for all $w \in A^{*}(\alpha(w), \alpha(w)) \in \mathbf{I}[\alpha]$
2. Operation $\bullet:\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha]$ and $\left(t_{1}, t_{2}\right) \in \mathbf{I}[\alpha] \Rightarrow\left(s_{1} t_{1}, s_{2} t_{2}\right) \in \mathbf{I}[\alpha]$

A first (non complete) algorithm computing $\mathbf{I}[\alpha]$

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

$\left[\right.$| 3rd Property of FO | |
| :---: | :---: |
| $\forall k \exists n \forall w_{1}, w_{2} \in A^{*} \quad w_{1} \approx_{k} w_{2} \Rightarrow\left(w_{1}\right)^{n} \approx_{k}\left(w_{2}\right)^{n+1}$ | |

1. Trivial pairs: for all $w \in A^{*}(\alpha(w), \alpha(w)) \in \mathbf{I}[\alpha]$
2. Operation $\bullet:\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha]$ and $\left(t_{1}, t_{2}\right) \in \mathbf{I}[\alpha] \Rightarrow\left(s_{1} t_{1}, s_{2} t_{2}\right) \in \mathbf{I}[\alpha]$
3. Operation $\omega:\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha] \Rightarrow\left(s_{1}^{\omega}, s_{2}^{\omega+1}\right) \in \mathbf{I}[\alpha]$

A first (non complete) algorithm computing $\mathbf{I}[\alpha]$

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

$$
\begin{array}{|c}
\text { 3rd Property of FO } \\
\forall k \exists n \forall w_{1}, w_{2} \in A^{*}
\end{array} \quad w_{1} \approx_{k} w_{2} \Rightarrow\left(w_{1}\right)^{n} \approx_{k}\left(w_{2}\right)^{n+1}
$$

1. Trivial pairs: for all $w \in A^{*}(\alpha(w), \alpha(w)) \in \mathbf{I}[\alpha]$
2. Operation :: $\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha]$ and $\left(t_{1}, t_{2}\right) \in \mathbf{I}[\alpha] \Rightarrow\left(s_{1} t_{1}, s_{2} t_{2}\right) \in \mathbf{I}[\alpha]$
3. Operation ω : $\left(s_{1}, s_{2}\right) \in \mathbf{I}[\alpha] \Rightarrow\left(s_{1}^{\omega}, s_{2}^{\omega+1}\right) \in \mathbf{I}[\alpha]$

Correct by definition but not complete

Why it does not work

> 3rd Property of FO $w_{1} \approx_{k} w_{2} \Rightarrow\left(w_{1}\right)^{n} \approx_{k}\left(w_{2}\right)^{n+1}$

Why it does not work

All large concatenations of words in $\left\{w_{1}, \ldots, w_{m}\right\}$ are \approx_{k}-equivalent.

Need for better analysis

A Generalization: FO-indistinguishable Sets for $\alpha: A^{*} \rightarrow M$:

- $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \in \mathbf{I}_{k}[\alpha]$ if

- Limit set: $\mathbf{I}[\alpha]=\bigcap_{k} \mathbf{I}_{k}[\alpha]$.
- Computing these sets is more general than computing pairs.
\Rightarrow also solves separation (and gives much more).

From Pairs to Sets

New Objective
We want to compute the set $\mathbf{I}[\alpha] \subseteq 2^{M}$ such that:

$$
T \in \mathbf{I}[\alpha] \text { iff } T \in \mathbf{I}_{k}[\alpha], \forall k \in \mathbb{N}
$$

From Pairs to Sets

New Objective

We want to compute the set $\mathbf{I}[\alpha] \subseteq 2^{M}$ such that:

$$
T \in \mathbf{I}[\alpha] \text { iff } T \in \mathbf{I}_{k}[\alpha], \forall k \in \mathbb{N}
$$

Remark

- With our new definition, we have $\mathbf{I}[\alpha] \subseteq 2^{M}$.
- 2^{M} is a monoid for operation

$$
T_{1} \cdot T_{2}=\left\{t_{1} t_{2} \mid t_{1} \in T_{1} t_{2} \in T_{2}\right\}
$$

A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

$$
\begin{aligned}
& \text { 1st Property of FO } \\
& w \approx_{k} w
\end{aligned}
$$

A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

$$
\begin{gathered}
\text { 1st Property of FO } \\
w \approx_{k} w
\end{gathered}
$$

1. Trivial sets: for all $w \in A^{*}\{\alpha(w)\} \in \mathbf{I}[\alpha]$

A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

$$
\begin{gathered}
\text { 2nd Property of FO } \\
w_{1} \approx_{k} w_{2} \text { and } u_{1} \approx_{k} u_{2} \Rightarrow w_{1} u_{1} \approx_{k} w_{2} u_{2}
\end{gathered}
$$

1. Trivial sets: for all $w \in A^{*}\{\alpha(w)\} \in \mathbf{I}[\alpha]$

A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

$$
\begin{array}{|c}
\text { 2nd Property of FO } \\
w_{1} \approx_{k} w_{2} \text { and } u_{1} \approx_{k} u_{2} \Rightarrow w_{1} u_{1} \approx_{k} w_{2} u_{2}
\end{array}
$$

1. Trivial sets: for all $w \in A^{*}\{\alpha(w)\} \in \mathbf{I}[\alpha]$
2. Operation $\circ: T_{1} \in \mathbf{I}[\alpha]$ and $T_{2} \in \mathbf{I}[\alpha] \Rightarrow T_{1} T_{2} \in \mathbf{I}[\alpha]$

A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

3rd Property of FO
 $w_{1} \approx_{k} w_{2} \cdots \approx_{k} w_{m}$

All large concatenations of words in $\left\{w_{1}, \cdots, w_{m}\right\}$ are \approx_{k}-equivalent.

1. Trivial sets: for all $w \in A^{*}\{\alpha(w)\} \in \mathbf{I}[\alpha]$
2. Operation $\circ: T_{1} \in \mathbf{I}[\alpha]$ and $T_{2} \in \mathbf{I}[\alpha] \Rightarrow T_{1} T_{2} \in \mathbf{I}[\alpha]$

A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

3rd Property of FO
 $w_{1} \approx_{k} w_{2} \cdots \approx_{k} w_{m}$

All large concatenations of words in $\left\{w_{1}, \cdots, w_{m}\right\}$ are \approx_{k}-equivalent.

1. Trivial sets: for all $w \in A^{*}\{\alpha(w)\} \in \mathbf{I}[\alpha]$
2. Operation $\bullet: T_{1} \in \mathbf{I}[\alpha]$ and $T_{2} \in \mathbf{I}[\alpha] \Rightarrow T_{1} T_{2} \in \mathbf{I}[\alpha]$
3. Operation $\omega: T \in \mathbf{I}[\alpha] \Rightarrow\left(T^{\omega} \cup T^{\omega+1}\right) \in \mathbf{I}[\alpha]$

A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

3rd Property of FO
 $w_{1} \approx_{k} w_{2} \cdots \approx_{k} w_{m}$

All large concatenations of words in $\left\{w_{1}, \cdots, w_{m}\right\}$ are \approx_{k}-equivalent.

1. Trivial sets: for all $w \in A^{*}\{\alpha(w)\} \in \mathbf{I}[\alpha]$
2. Operation $\bullet: T_{1} \in \mathbf{I}[\alpha]$ and $T_{2} \in \mathbf{I}[\alpha] \Rightarrow T_{1} T_{2} \in \mathbf{I}[\alpha]$
3. Operation $\omega: T \in \mathbf{I}[\alpha] \Rightarrow\left(T^{\omega} \cup T^{\omega+1}\right) \in \mathbf{I}[\alpha]$

Correct by definition (e.g., use EF games)
Can be proved to be complete

Tools

- Ehrenfeucht-Fraïssé games.
- Combinatorial tools: Simon's Factorization Forests \& Ramsey.

Conclusion

We shouldn't restrict ourselves to membership

Conclusion

We shouldn't restrict ourselves to membership, nor to separation.

Conclusion

We shouldn't restrict ourselves to membership, nor to separation.

- Freezing the framework (to membership or separation) yields limitations.
- This work is just a byproduct of the observation that one can be more demanding on the computed information.
- Generalizing the needed information is often mandatory.

Thank You!

