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First-order logic and MSO on words

First-order logic, with only the linear order ’<’.

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is a sequence of labeled positions.
▶ Positions can be quantified: ∃xφ.
▶ Unary predicates a(x), b(x), c(x) testing the label of position x.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))

▶ MSO Logic: idem + quantify over sets of positions X,Y , Z . . .
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Regular languages: a robust class

L = (aa)∗ 1 2

3

a

a

b b

a, b

∀x a(x) ∧
∃X [even(X) ∧

∀x (x ∈ X)]

1 2 3

ε 1 2 3

a 2 1 3

b 3 3 3 ≃ Z/2Z∪{0}

A∗

α

L = α−1({ε}).
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Kleene-Büchi-Elgot-Trakhtenbrot Theorem

Regular expressions Finite automata

MSO formulas
Recognition by a

finite monoid
L = α−1(F )

▶ Generic.
▶ Easy.
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Why look at FO and fragments?

▶ Simple formulas are better (algorithmically).
▶ Some parameters making formulas complex:

▶ Second order quantification,
▶ Number of quantifier alternations,
▶ Allowed predicates,
▶ Number of variable names.

Membership Problem for a fragment F
▶ INPUT A language L.
▶ QUESTION Is L expressible in F?
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First problem: Membership
Membership problem for a fragment F

▶ INPUT A language L.
▶ QUESTION Is L expressible in F?

a

a

b

b
b

c

c

a

a

c

a
a

a

b

b
b

c

c

a

a

c

a

Can it be defined
with an F formula?

Schützenberger’65, McNaughton and Papert’71
For L a regular language, the following are equivalent:

▶ L is FO-definable.
▶ The syntactic monoid of L satisfies uω+1 = uω.
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Quantifier alternation

Level i: Σi

For all i, a Σi formula is

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · φ(x̄, ȳ, . . . )

i blocks (starting with ∃) quantifier-free

Σi is not closed under complement ⇒ we get two other classes:

Level i: Πi

Negation of a Σi formula:

∀x1, . . . , xn1∃y1, . . . , yn2 · · · φ

i blocks (starting with ∀)

Level i: BΣi

Boolean combinations of Σi

(and Πi) formulas.
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FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013
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Several Hierarchies

▶ A fragment is obtained by restricting
▶ Number of quantifier alternations,
▶ Allowed predicates,
▶ Number of variable names.

▶ FO(<), FO(<,+1), FO(<,+1,min,max): same expressiveness.

With restricted alternation, this yields distinct fragments.

Σ1(<), Σ1(<,+1), and Σ1(<,+1,min,max)
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Why we want more than membership

If the membership answer for L
▶ is YES

▶ All “subparts” of the minimal automaton of L are F-definable.

▶ is NO, then even if F can talk about L:
▶ We have almost no information.

▶ Eg, for FO, defining L requires differentiating some uω and uω+1.

13 / 37



Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1, L2

a

a

a

a b b b

a
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a
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Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definable

Can L1 be separated from L2

with an F formula?

L1

L2

A∗

F-definableF-separable from complement
⇔

F-definable
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Beyond membership: Separation

Membership can be formally reduced to separation
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Motivations for separation

▶ More general: able to extract information for all languages.
▶ Cannot start from canonical object for the (unknown) separator.
▶ Therefore, may give insight to solve harder problems.

▶ 2 transfer
results:
▶ decidability of separation for level Σi of the quantifier alternation

hierarchy entails decidability of membership for Σi+1.

▶ decidability of separation preserved when enriching F with +1.

⇒ We shouldn’t restrict ourselves to membership.
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Related work

▶ Separation already
considered in an algebraic framework.

▶ First result by K. Henckell ’88 for FO, then for other fragments.

▶ Transfer F → F [+1]: H. Straubing ’85, B. Steinberg ’01 (sep.).

▶ Purely algebraic proofs, hiding combinatorial & logical intuitions.

▶ Want: Simpler, combinatorial proofs.

16 / 37



An already known result for FO: Henckell ’88
▶ Simple algorithm.
▶ Easy correctness proof.
▶ Intricate completeness proof.

17 / 37



A toy example: Separation for FO(=)

▶ FO(=) can just count occurrences of letters, up to threshold.
▶ Example: at least 2 a’s: ∃x, y x ̸= y ∧ a(x) ∧ a(y).
▶ FO(=) can express properties like

at least 2 a’s, no more than 3 b’s, exactly 1 c.

▶ How to decide separation for FO(=)?

18 / 37



A toy example: Separation for FO(=)
▶ Let π(u) ∈ NA be the commutative (aka. Parikh) image of u.

π(aabad) = (3, 1, 0, 1).

Parikh’s Theorem
For L context-free, π(L) is (effectively) semilinear.

▶ For x⃗, y⃗ ∈ NA, x⃗ =d y⃗ if ∀i: xi = yi or both xi, yi ⩾ d.

Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃u1 ∈ L1 ∃u2 ∈ L2, π(u1) =d π(u2).

Proof. ⇒ The FO(=) language {u | π(u) ∈d π(L1)} contains L1.
Since L1, L2 are not FO(=)-separable, it intersects L2.

⇐ Assume there is an FO(=)-separator K, say of threshold d.
Then L1 ⊆ K ⇒ u1 ∈ K ⇒ u2 ∈ K, impossible since u2 ∈ L2.
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A toy example: Separation for FO(=)

Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃x⃗1 ∈ π(L1)∃x⃗2 ∈ π(L2), x⃗1 =d x⃗2.

Decidability of FO(=)-separation is then implied by
▶ Parikh’s Theorem, and
▶ Decidability of Presburger logic.
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Separation for FO(=,+1)

▶ FO(=) can just count occurrences of letters up to a threshold.
▶ FO(=,+1) can count occurrences of infixes up to a threshold.

There
exist
at
least
2
occurrences
of abba
and
the
word
start
with ba.

▶ For membership, decidability follows from a delay theorem:
To test FO(=,+1)-definability, look at infixes of bounded size.

▶ Membership proof not trivial. Transferring separability is easier.
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FO Quantifier alternation hierarchy

Σ1

Π1
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⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13
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Recent progress
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(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art
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Summary of recent results

Specific results
▶ Separation reproved for FO, proved for Σ2, Σ3.
▶ Membership for BΣ2 (specific proof).

Transfer results
▶ Separation of Σn entails membership for Σn+1.
▶ Separation for F entails separation for F [+1].
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Proofs techniques

FO is hard, let’s make it easy!

Quantifier rank of a formula: Nested depth of quantifiers.

∃x c(x) ∧ ∀x∃y (a(x) =⇒ ∃z (x < z < y ∧ b(y))) rank 3

If k fixed: finitely many FO properties of rank k
⇒ Separation is easy (test them all).

k-equivalence for FO
Let w1, w2 be words:

w1 ≈k w2 iff w1, w2 satisfy the same formulas of rank k

All FO properties
of
rank k are
unions
of
classes
of ≈k.
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Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.
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“Pair” analysis
Fix α : A∗ → M . Compute Ik[α], k-indistinguishable pairs.

FO-indistinguishable pairs for α : A∗ → M

(s1, s2) ∈ Ik[α] if

∃ w1 ≈k w2

s1 s2

α α

▶ Smaller and smaller sets: Ik+1[α] ⊆ Ik[α].
▶ Limit set: I[α] =

∩
k Ik[α].

▶ Computing these pairs solves separation:

(s1, s2) ∈ I[α] ⇐⇒ α−1(s1) and α−1(s2) not separable
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“Pair” analysis

▶ Smaller and smaller sets: Ik+1[α] ⊆ Ik[α]
▶ Limit set: I[α] =

∩
k Ik[α].

What have we gained?

We work with finite semigroups ⇒ the refinement stabilizes.

� It may happen that Ik+1[α] = Ik[α] before stabilization.
It may happen that

▶ (r, s) ∈ I[α],
▶ (s, t) ∈ I[α],
▶ but (r, t) ̸∈ I[α] (no transitivity).
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The Separation Criterion

Separation Criterion
L1, L2 recognized by α : A∗ → M are not separable

iff
there are accepting elements s1, s2 ∈ M for L1, L2 s.t. (s1, s2) ∈ I[α].

Computing I[α] suffices to solve separation.
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Two approaches to compute I[α]

Brute-force

▶ k fixed: computing Ik[α] easy.

▶ I[α] = Ik[α] for some k.

▶ ⇒ Prove a bound k = f(α),
Compute Ik[α].

Algorithm

Algorithm bypassing the bound k:
Direct fixpoint computation of I[α].

We use approach 2.
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A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]
2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]
3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s

ω+1
2 ) ∈ I[α]

Correct by definition but not complete
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Why it does not work

3rd Property of FO
w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

Not general enough

w1 ≈k w2 ≈k · · · ≈k wm

⇓
All large concatenations of words in {w1, . . . , wm} are ≈k-equivalent.

Needs to be replaced
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Need for better analysis

A Generalization: FO-indistinguishable Sets for α : A∗ → M :

▶ {s1, s2, . . . , sn} ∈ Ik[α] if
∃ w1 ≈k w2 · · · ≈k wn

s1 s2 · · · sn

α α α

▶ Limit set: I[α] =
∩

k Ik[α].
▶ Computing these sets is more general than computing pairs.

⇒ also solves separation (and gives much more).
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From Pairs to Sets

New Objective

We want to compute the set I[α] ⊆ 2M such that:

T ∈ I[α] iff T ∈ Ik[α], ∀k ∈ N

Remark
▶ With our new definition, we have I[α] ⊆ 2M .
▶ 2M is a monoid for operation

T1 · T2 = {t1t2 | t1 ∈ T1 t2 ∈ T2}
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A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]
2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete
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All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]

2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete
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Tools

▶ Ehrenfeucht-Fraïssé games.
▶ Combinatorial tools: Simon’s Factorization Forests & Ramsey.
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Conclusion

We shouldn’t restrict ourselves to membership

, nor to separation.

▶ Freezing the framework (to membership or separation) yields
limitations.

▶ This work is just a byproduct of the observation that one can be
more demanding on the computed information.

▶ Generalizing the needed information is often mandatory.
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Thank You!
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