
The Separation Problem:
An introduction and transfer theorems

T. Place, L. van Rooijen, Marc Zeitoun

LaBRI, Université Bordeaux, CNRS

SDA2 2015, MLV — 10/4/2015

1 / 37



Framework and Motivations

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

For this talk

Structures Descriptive Formalism

ababcbaaWords

Trees

ababcbaa
Words

Trees

ababcbaa
Words

Trees

Express Properties

2 / 37



Framework and Motivations

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

For this talk

Structures Descriptive Formalism

ababcbaaWords

Trees

ababcbaa
Words

Trees

ababcbaa
Words

Trees

Express Properties

2 / 37



Framework and Motivations

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

First-Order Logic (FO)
Piecewise Testable (BΣ1)
2-Variables FO (FO2)
Fragments Σi, BΣi

Locally Threshold Testable (LTT)

For this talk

Structures Descriptive Formalism

ababcbaaWords

Trees

ababcbaa
Words

Trees

ababcbaa
Words

Trees

Express Properties

2 / 37



First-order logic and MSO on words

First-order logic, with only the linear order ’<’.

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is a sequence of labeled positions.
▶ Positions can be quantified: ∃xφ.
▶ Unary predicates a(x), b(x), c(x) testing the label of position x.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))

▶ MSO Logic: idem + quantify over sets of positions X,Y , Z . . .

3 / 37



First-order logic and MSO on words

First-order logic, with only the linear order ’<’.

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is a sequence of labeled positions.
▶ Positions can be quantified: ∃xφ.
▶ Unary predicates a(x), b(x), c(x) testing the label of position x.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))

▶ MSO Logic: idem + quantify over sets of positions X,Y , Z . . .

3 / 37



First-order logic and MSO on words

First-order logic, with only the linear order ’<’.

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is a sequence of labeled positions.
▶ Positions can be quantified: ∃xφ.
▶ Unary predicates a(x), b(x), c(x) testing the label of position x.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))

▶ MSO Logic: idem + quantify over sets of positions X,Y , Z . . .

3 / 37



First-order logic and MSO on words

First-order logic, with only the linear order ’<’.

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is a sequence of labeled positions.
▶ Positions can be quantified: ∃xφ.
▶ Unary predicates a(x), b(x), c(x) testing the label of position x.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))

▶ MSO Logic: idem + quantify over sets of positions X,Y , Z . . .

3 / 37



Regular languages: a robust class

L = (aa)∗ 1 2

3

a

a

b b

a, b

∀x a(x) ∧
∃X [even(X) ∧

∀x (x ∈ X)]

1 2 3

ε 1 2 3

a 2 1 3

b 3 3 3 ≃ Z/2Z∪{0}

A∗

α

L = α−1({ε}).

4 / 37



Regular languages: a robust class

L = (aa)∗ 1 2

3

a

a

b b

a, b

∀x a(x) ∧
∃X [even(X) ∧

∀x (x ∈ X)]

1 2 3

ε 1 2 3

a 2 1 3

b 3 3 3 ≃ Z/2Z∪{0}

A∗

α

L = α−1({ε}).

4 / 37



Regular languages: a robust class

L = (aa)∗ 1 2

3

a

a

b b

a, b

∀x a(x) ∧
∃X [even(X) ∧

∀x (x ∈ X)]

1 2 3

ε 1 2 3

a 2 1 3

b 3 3 3

≃ Z/2Z∪{0}

A∗

α

L = α−1({ε}).

4 / 37



Regular languages: a robust class

L = (aa)∗ 1 2

3

a

a

b b

a, b

∀x a(x) ∧
∃X [even(X) ∧

∀x (x ∈ X)]

1 2 3

ε 1 2 3

a 2 1 3

b 3 3 3 ≃ Z/2Z∪{0}

A∗

α

L = α−1({ε}).

4 / 37



Regular languages: a robust class

L = (aa)∗ 1 2

3

a

a

b b

a, b

∀x a(x) ∧
∃X [even(X) ∧

∀x (x ∈ X)]

1 2 3

ε 1 2 3

a 2 1 3

b 3 3 3 ≃ Z/2Z∪{0}

A∗

α

L = α−1({ε}).

4 / 37



Regular languages: a robust class

L = (aa)∗ 1 2

3

a

a

b b

a, b

∀x a(x) ∧
∃X [even(X) ∧

∀x (x ∈ X)]

1 2 3

ε 1 2 3

a 2 1 3

b 3 3 3 ≃ Z/2Z∪{0}

A∗

α

L = α−1({ε}).

4 / 37



Kleene-Büchi-Elgot-Trakhtenbrot Theorem

Regular expressions Finite automata

MSO formulas
Recognition by a

finite monoid
L = α−1(F )

▶ Generic.
▶ Easy.

5 / 37



Why look at FO and fragments?

▶ Simple formulas are better (algorithmically).
▶ Some parameters making formulas complex:

▶ Second order quantification,
▶ Number of quantifier alternations,
▶ Allowed predicates,
▶ Number of variable names.

Membership Problem for a fragment F
▶ INPUT A language L.
▶ QUESTION Is L expressible in F?

6 / 37



Why look at FO and fragments?

▶ Simple formulas are better (algorithmically).
▶ Some parameters making formulas complex:

▶ Second order quantification,
▶ Number of quantifier alternations,
▶ Allowed predicates,
▶ Number of variable names.

Membership Problem for a fragment F
▶ INPUT A language L.
▶ QUESTION Is L expressible in F?

6 / 37



First problem: Membership
Membership problem for a fragment F

▶ INPUT A language L.
▶ QUESTION Is L expressible in F?

a

a

b

b
b

c

c

a

a

c

a
a

a

b

b
b

c

c

a

a

c

a

Can it be defined
with an F formula?

Schützenberger’65, McNaughton and Papert’71
For L a regular language, the following are equivalent:

▶ L is FO-definable.
▶ The syntactic monoid of L satisfies uω+1 = uω.

7 / 37



First problem: Membership
Membership problem for a fragment F

▶ INPUT A language L.
▶ QUESTION Is L expressible in F?

a

a

b

b
b

c

c

a

a

c

a
a

a

b

b
b

c

c

a

a

c

a
Can it be defined

with an F formula?

Schützenberger’65, McNaughton and Papert’71
For L a regular language, the following are equivalent:

▶ L is FO-definable.
▶ The syntactic monoid of L satisfies uω+1 = uω.

7 / 37



First problem: Membership
Membership problem for a fragment F

▶ INPUT A language L.
▶ QUESTION Is L expressible in F?

a

a

b

b
b

c

c

a

a

c

a
a

a

b

b
b

c

c

a

a

c

a
Can it be defined

with an F formula?

Schützenberger’65, McNaughton and Papert’71
For L a regular language, the following are equivalent:

▶ L is FO-definable.
▶ The syntactic monoid of L satisfies uω+1 = uω.

7 / 37



8 / 37



9 / 37



Quantifier alternation

Level i: Σi

For all i, a Σi formula is

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · φ(x̄, ȳ, . . . )

i blocks (starting with ∃) quantifier-free

Σi is not closed under complement ⇒ we get two other classes:

Level i: Πi

Negation of a Σi formula:

∀x1, . . . , xn1∃y1, . . . , yn2 · · · φ

i blocks (starting with ∀)

Level i: BΣi

Boolean combinations of Σi

(and Πi) formulas.

10 / 37



Quantifier alternation

Level i: Σi

For all i, a Σi formula is

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · φ(x̄, ȳ, . . . )

i blocks (starting with ∃) quantifier-free

Σi is not closed under complement ⇒ we get two other classes:

Level i: Πi

Negation of a Σi formula:

∀x1, . . . , xn1∃y1, . . . , yn2 · · · φ

i blocks (starting with ∀)

Level i: BΣi

Boolean combinations of Σi

(and Πi) formulas.

10 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

11 / 37



Several Hierarchies

▶ A fragment is obtained by restricting
▶ Number of quantifier alternations,
▶ Allowed predicates,
▶ Number of variable names.

▶ FO(<), FO(<,+1), FO(<,+1,min,max): same expressiveness.

With restricted alternation, this yields distinct fragments.

Σ1(<), Σ1(<,+1), and Σ1(<,+1,min,max)

12 / 37



Why we want more than membership

If the membership answer for L
▶ is YES

▶ All “subparts” of the minimal automaton of L are F-definable.

▶ is NO, then even if F can talk about L:
▶ We have almost no information.

▶ Eg, for FO, defining L requires differentiating some uω and uω+1.

13 / 37



Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1, L2

a

a

a

a b b b

a

Take 2 regular languages L1, L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definable

Can L1 be separated from L2

with an F formula?

L1

L2

A∗

F-definableF-separable from complement
⇔

F-definable

14 / 37



Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1, L2

a

a

a

a b b b

a

Take 2 regular languages L1, L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definable

Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definableF-separable from complement
⇔

F-definable

14 / 37



Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1, L2

a

a

a

a b b b

a

Take 2 regular languages L1, L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definable

Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definable

F-separable from complement
⇔

F-definable

14 / 37



Beyond membership: Separation

Membership can be formally reduced to separation

Take 2 regular languages L1, L2

a

a

a

a b b b

a

Take 2 regular languages L1, L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definable

Can L1 be separated from L2

with an F formula?

L2 = A∗ \ L1 L1

L2

A∗

F-definableF-separable from complement
⇔

F-definable

14 / 37



Beyond membership: Separation

Membership can be formally reduced to separation

Take 2 regular languages L1, L2

a

a

a

a b b b

a

Take 2 regular languages L1, L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with an F formula?

L1L2

A∗

F-definable

Can L1 be separated from L2

with an F formula?

L2 = A∗ \ L1 L1

L2

A∗

F-definable

F-separable from complement
⇔

F-definable

14 / 37



Motivations for separation

▶ More general: able to extract information for all languages.
▶ Cannot start from canonical object for the (unknown) separator.
▶ Therefore, may give insight to solve harder problems.

▶ 2 transfer
results:
▶ decidability of separation for level Σi of the quantifier alternation

hierarchy entails decidability of membership for Σi+1.

▶ decidability of separation preserved when enriching F with +1.

⇒ We shouldn’t restrict ourselves to membership.

15 / 37



Motivations for separation

▶ More general: able to extract information for all languages.
▶ Cannot start from canonical object for the (unknown) separator.
▶ Therefore, may give insight to solve harder problems.

▶ 2 transfer
results:
▶ decidability of separation for level Σi of the quantifier alternation

hierarchy entails decidability of membership for Σi+1.

▶ decidability of separation preserved when enriching F with +1.

⇒ We shouldn’t restrict ourselves to membership.

15 / 37



Motivations for separation

▶ More general: able to extract information for all languages.
▶ Cannot start from canonical object for the (unknown) separator.
▶ Therefore, may give insight to solve harder problems.

▶ 2 transfer
results:
▶ decidability of separation for level Σi of the quantifier alternation

hierarchy entails decidability of membership for Σi+1.

▶ decidability of separation preserved when enriching F with +1.

⇒ We shouldn’t restrict ourselves to membership.

15 / 37



Related work

▶ Separation already
considered in an algebraic framework.

▶ First result by K. Henckell ’88 for FO, then for other fragments.

▶ Transfer F → F [+1]: H. Straubing ’85, B. Steinberg ’01 (sep.).

▶ Purely algebraic proofs, hiding combinatorial & logical intuitions.

▶ Want: Simpler, combinatorial proofs.

16 / 37



An already known result for FO: Henckell ’88
▶ Simple algorithm.
▶ Easy correctness proof.
▶ Intricate completeness proof.

17 / 37



A toy example: Separation for FO(=)

▶ FO(=) can just count occurrences of letters, up to threshold.
▶ Example: at least 2 a’s: ∃x, y x ̸= y ∧ a(x) ∧ a(y).
▶ FO(=) can express properties like

at least 2 a’s, no more than 3 b’s, exactly 1 c.

▶ How to decide separation for FO(=)?

18 / 37



A toy example: Separation for FO(=)
▶ Let π(u) ∈ NA be the commutative (aka. Parikh) image of u.

π(aabad) = (3, 1, 0, 1).

Parikh’s Theorem
For L context-free, π(L) is (effectively) semilinear.

▶ For x⃗, y⃗ ∈ NA, x⃗ =d y⃗ if ∀i: xi = yi or both xi, yi ⩾ d.

Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃u1 ∈ L1 ∃u2 ∈ L2, π(u1) =d π(u2).

Proof. ⇒ The FO(=) language {u | π(u) ∈d π(L1)} contains L1.
Since L1, L2 are not FO(=)-separable, it intersects L2.

⇐ Assume there is an FO(=)-separator K, say of threshold d.
Then L1 ⊆ K ⇒ u1 ∈ K ⇒ u2 ∈ K, impossible since u2 ∈ L2.

19 / 37



A toy example: Separation for FO(=)
▶ Let π(u) ∈ NA be the commutative (aka. Parikh) image of u.

π(aabad) = (3, 1, 0, 1).

Parikh’s Theorem
For L context-free, π(L) is (effectively) semilinear.

▶ For x⃗, y⃗ ∈ NA, x⃗ =d y⃗ if ∀i: xi = yi or both xi, yi ⩾ d.
Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃u1 ∈ L1 ∃u2 ∈ L2, π(u1) =d π(u2).

Proof. ⇒ The FO(=) language {u | π(u) ∈d π(L1)} contains L1.
Since L1, L2 are not FO(=)-separable, it intersects L2.

⇐ Assume there is an FO(=)-separator K, say of threshold d.
Then L1 ⊆ K ⇒ u1 ∈ K ⇒ u2 ∈ K, impossible since u2 ∈ L2.

19 / 37



A toy example: Separation for FO(=)
▶ Let π(u) ∈ NA be the commutative (aka. Parikh) image of u.

π(aabad) = (3, 1, 0, 1).

Parikh’s Theorem
For L context-free, π(L) is (effectively) semilinear.

▶ For x⃗, y⃗ ∈ NA, x⃗ =d y⃗ if ∀i: xi = yi or both xi, yi ⩾ d.
Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃u1 ∈ L1 ∃u2 ∈ L2, π(u1) =d π(u2).

Proof. ⇒ The FO(=) language {u | π(u) ∈d π(L1)} contains L1.
Since L1, L2 are not FO(=)-separable, it intersects L2.

⇐ Assume there is an FO(=)-separator K, say of threshold d.
Then L1 ⊆ K ⇒ u1 ∈ K ⇒ u2 ∈ K, impossible since u2 ∈ L2.

19 / 37



A toy example: Separation for FO(=)
▶ Let π(u) ∈ NA be the commutative (aka. Parikh) image of u.

π(aabad) = (3, 1, 0, 1).

Parikh’s Theorem
For L context-free, π(L) is (effectively) semilinear.

▶ For x⃗, y⃗ ∈ NA, x⃗ =d y⃗ if ∀i: xi = yi or both xi, yi ⩾ d.
Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃u1 ∈ L1 ∃u2 ∈ L2, π(u1) =d π(u2).

Proof. ⇒ The FO(=) language {u | π(u) ∈d π(L1)} contains L1.
Since L1, L2 are not FO(=)-separable, it intersects L2.

⇐ Assume there is an FO(=)-separator K, say of threshold d.
Then L1 ⊆ K ⇒ u1 ∈ K ⇒ u2 ∈ K, impossible since u2 ∈ L2.

19 / 37



A toy example: Separation for FO(=)

Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃x⃗1 ∈ π(L1)∃x⃗2 ∈ π(L2), x⃗1 =d x⃗2.

Decidability of FO(=)-separation is then implied by
▶ Parikh’s Theorem, and
▶ Decidability of Presburger logic.

20 / 37



Separation for FO(=,+1)

▶ FO(=) can just count occurrences of letters up to a threshold.
▶ FO(=,+1) can count occurrences of infixes up to a threshold.

There
exist
at
least
2
occurrences
of abba
and
the
word
start
with ba.

▶ For membership, decidability follows from a delay theorem:
To test FO(=,+1)-definability, look at infixes of bounded size.

▶ Membership proof not trivial. Transferring separability is easier.

21 / 37



Separation for FO(=,+1)

▶ FO(=) can just count occurrences of letters up to a threshold.
▶ FO(=,+1) can count occurrences of infixes up to a threshold.

There
exist
at
least
2
occurrences
of abba
and
the
word
start
with ba.

▶ For membership, decidability follows from a delay theorem:
To test FO(=,+1)-definability, look at infixes of bounded size.

▶ Membership proof not trivial. Transferring separability is easier.

21 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88

Recent progress

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

Recent progress

Membership Knowledge

Recent progress

New Separation Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art

22 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88

Recent progress

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

Recent progress

Membership Knowledge

Recent progress

New Separation Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art

22 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88

Recent progress

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

Recent progress

Membership Knowledge

Recent progress

New Separation Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art

22 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88

Recent progress

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

Recent progress

Membership Knowledge

Recent progress

New Separation Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art

22 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88

Recent progress

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

Recent progress

Membership Knowledge

Recent progress

New Separation Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art

22 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88

Recent progress

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

Recent progress

Membership Knowledge

Recent progress

New Separation Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art

22 / 37



FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 FO

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

(Simon)’75 (Arfi)’87
(Pin, Weil)’95

Membership decidable

(Schützenberger)’65

State of the art in 2013

Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97

(Henckell)’88

State of the art in 2013

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88

Recent progress

New Separation Knowledge
Membership Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

Recent progress

Membership Knowledge

Recent progress

New Separation Knowledge

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14(Place,Z.)’14

New Membership Knowledge

By relying on Σ2-Analysis, one can prove
decidable characterizations for BΣ2,∆3,Σ3 and Π3.

New state of the art

New Membership Knowledge
T.
Place, LICS’15

Separation for Σ3 (hard)
Decidability for ∆4,Σ4,Π4

Still open for BΣ3

New state of the art

22 / 37



Summary of recent results

Specific results
▶ Separation reproved for FO, proved for Σ2, Σ3.
▶ Membership for BΣ2 (specific proof).

Transfer results
▶ Separation of Σn entails membership for Σn+1.
▶ Separation for F entails separation for F [+1].

23 / 37



Proofs techniques

FO is hard, let’s make it easy!

Quantifier rank of a formula: Nested depth of quantifiers.

∃x c(x) ∧ ∀x∃y (a(x) =⇒ ∃z (x < z < y ∧ b(y))) rank 3

If k fixed: finitely many FO properties of rank k
⇒ Separation is easy (test them all).

k-equivalence for FO
Let w1, w2 be words:

w1 ≈k w2 iff w1, w2 satisfy the same formulas of rank k

All FO properties
of
rank k are
unions
of
classes
of ≈k.

24 / 37



Proofs techniques

FO is hard, let’s make it easy!

Quantifier rank of a formula: Nested depth of quantifiers.

∃x c(x) ∧ ∀x∃y (a(x) =⇒ ∃z (x < z < y ∧ b(y))) rank 3

If k fixed: finitely many FO properties of rank k
⇒ Separation is easy (test them all).

k-equivalence for FO
Let w1, w2 be words:

w1 ≈k w2 iff w1, w2 satisfy the same formulas of rank k

All FO properties
of
rank k are
unions
of
classes
of ≈k.

24 / 37



Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.

25 / 37



Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.

25 / 37



Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.

25 / 37



Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.

25 / 37



Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.

25 / 37



Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.

25 / 37



Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ≈k-classes

Separable with rank k iff no ≈k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ≈k.

When k gets larger, ≈k is refined but it never ends

Idea. Abstract ≈k on a finite monoid recognizing both L1 and L2.

25 / 37



“Pair” analysis
Fix α : A∗ → M . Compute Ik[α], k-indistinguishable pairs.

FO-indistinguishable pairs for α : A∗ → M

(s1, s2) ∈ Ik[α] if

∃ w1 ≈k w2

s1 s2

α α

▶ Smaller and smaller sets: Ik+1[α] ⊆ Ik[α].
▶ Limit set: I[α] =

∩
k Ik[α].

▶ Computing these pairs solves separation:

(s1, s2) ∈ I[α] ⇐⇒ α−1(s1) and α−1(s2) not separable

26 / 37



“Pair” analysis

▶ Smaller and smaller sets: Ik+1[α] ⊆ Ik[α]
▶ Limit set: I[α] =

∩
k Ik[α].

What have we gained?

We work with finite semigroups ⇒ the refinement stabilizes.

� It may happen that Ik+1[α] = Ik[α] before stabilization.
It may happen that

▶ (r, s) ∈ I[α],
▶ (s, t) ∈ I[α],
▶ but (r, t) ̸∈ I[α] (no transitivity).

27 / 37



“Pair” analysis

▶ Smaller and smaller sets: Ik+1[α] ⊆ Ik[α]
▶ Limit set: I[α] =

∩
k Ik[α].

What have we gained?

We work with finite semigroups ⇒ the refinement stabilizes.

� It may happen that Ik+1[α] = Ik[α] before stabilization.
It may happen that

▶ (r, s) ∈ I[α],
▶ (s, t) ∈ I[α],
▶ but (r, t) ̸∈ I[α] (no transitivity).

27 / 37



The Separation Criterion

Separation Criterion
L1, L2 recognized by α : A∗ → M are not separable

iff
there are accepting elements s1, s2 ∈ M for L1, L2 s.t. (s1, s2) ∈ I[α].

Computing I[α] suffices to solve separation.

28 / 37



The Separation Criterion

Separation Criterion
L1, L2 recognized by α : A∗ → M are not separable

iff
there are accepting elements s1, s2 ∈ M for L1, L2 s.t. (s1, s2) ∈ I[α].

Computing I[α] suffices to solve separation.

28 / 37



Two approaches to compute I[α]

Brute-force

▶ k fixed: computing Ik[α] easy.

▶ I[α] = Ik[α] for some k.

▶ ⇒ Prove a bound k = f(α),
Compute Ik[α].

Algorithm

Algorithm bypassing the bound k:
Direct fixpoint computation of I[α].

We use approach 2.

29 / 37



Two approaches to compute I[α]

Brute-force

▶ k fixed: computing Ik[α] easy.

▶ I[α] = Ik[α] for some k.

▶ ⇒ Prove a bound k = f(α),
Compute Ik[α].

Algorithm

Algorithm bypassing the bound k:
Direct fixpoint computation of I[α].

We use approach 2.

29 / 37



A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]
2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]
3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s

ω+1
2 ) ∈ I[α]

Correct by definition but not complete

30 / 37



A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]

2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]
3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s

ω+1
2 ) ∈ I[α]

Correct by definition but not complete

30 / 37



A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]

2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]
3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s

ω+1
2 ) ∈ I[α]

Correct by definition but not complete

30 / 37



A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]
2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]

3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s
ω+1
2 ) ∈ I[α]

Correct by definition but not complete

30 / 37



A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]
2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]

3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s
ω+1
2 ) ∈ I[α]

Correct by definition but not complete

30 / 37



A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]
2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]
3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s

ω+1
2 ) ∈ I[α]

Correct by definition but not complete

30 / 37



A first (non complete) algorithm computing I[α]

Idea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A∗ w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]
2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]
3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s

ω+1
2 ) ∈ I[α]

Correct by definition but not complete

30 / 37



Why it does not work

3rd Property of FO
w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

Not general enough

w1 ≈k w2 ≈k · · · ≈k wm

⇓
All large concatenations of words in {w1, . . . , wm} are ≈k-equivalent.

Needs to be replaced

31 / 37



Why it does not work

3rd Property of FO
w1 ≈k w2 ⇒ (w1)

n ≈k (w2)
n+1

Not general enough

w1 ≈k w2 ≈k · · · ≈k wm

⇓
All large concatenations of words in {w1, . . . , wm} are ≈k-equivalent.

Needs to be replaced

31 / 37



Need for better analysis

A Generalization: FO-indistinguishable Sets for α : A∗ → M :

▶ {s1, s2, . . . , sn} ∈ Ik[α] if
∃ w1 ≈k w2 · · · ≈k wn

s1 s2 · · · sn

α α α

▶ Limit set: I[α] =
∩

k Ik[α].
▶ Computing these sets is more general than computing pairs.

⇒ also solves separation (and gives much more).

32 / 37



From Pairs to Sets

New Objective

We want to compute the set I[α] ⊆ 2M such that:

T ∈ I[α] iff T ∈ Ik[α], ∀k ∈ N

Remark
▶ With our new definition, we have I[α] ⊆ 2M .
▶ 2M is a monoid for operation

T1 · T2 = {t1t2 | t1 ∈ T1 t2 ∈ T2}

33 / 37



From Pairs to Sets

New Objective

We want to compute the set I[α] ⊆ 2M such that:

T ∈ I[α] iff T ∈ Ik[α], ∀k ∈ N

Remark
▶ With our new definition, we have I[α] ⊆ 2M .
▶ 2M is a monoid for operation

T1 · T2 = {t1t2 | t1 ∈ T1 t2 ∈ T2}

33 / 37



A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]
2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete

34 / 37



A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]

2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete

34 / 37



A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]

2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete

34 / 37



A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]
2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]

3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete

34 / 37



A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]
2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]

3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete

34 / 37



A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]
2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete

34 / 37



A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

1st Property of FO
w ≈k w

2nd Property of FO
w1 ≈k w2 and u1 ≈k u2 ⇒ w1u1 ≈k w2u2

3rd Property of FO
w1 ≈k w2 · · · ≈k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ≈k-equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]
2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete

34 / 37



Tools

▶ Ehrenfeucht-Fraïssé games.
▶ Combinatorial tools: Simon’s Factorization Forests & Ramsey.

35 / 37



Conclusion

We shouldn’t restrict ourselves to membership

, nor to separation.

▶ Freezing the framework (to membership or separation) yields
limitations.

▶ This work is just a byproduct of the observation that one can be
more demanding on the computed information.

▶ Generalizing the needed information is often mandatory.

36 / 37



Conclusion

We shouldn’t restrict ourselves to membership, nor to separation.

▶ Freezing the framework (to membership or separation) yields
limitations.

▶ This work is just a byproduct of the observation that one can be
more demanding on the computed information.

▶ Generalizing the needed information is often mandatory.

36 / 37



Conclusion

We shouldn’t restrict ourselves to membership, nor to separation.

▶ Freezing the framework (to membership or separation) yields
limitations.

▶ This work is just a byproduct of the observation that one can be
more demanding on the computed information.

▶ Generalizing the needed information is often mandatory.

36 / 37



Thank You!

37 / 37


	Membership for Logical Fragments
	Why look at more general questions?

