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First-order logic and MSO on words

First-order logic, with only the linear order ’<’.
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First-order logic, with only the linear order ’<’.
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v

A word is a sequence of labeled positions.

Positions can be quantified: .

Unary predicates a(x), b(), c(x) testing the label of position .
One binary predicate: the linear-order x < y.

v

v

v

Example: every a comes after some b

Vr a(z) = Jy (b(y) A (y < z))

» MSO Logic: idem + quantify over sets of positions X, V", 7 ...
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Regular languages:

L = (aa)*

Vo a(x) A
41X leven(X) A
Vo (x € X))
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Kleene-Buchi-Elgot-Trakhtenbrot Theorem

Regular expressions « > Finite automata

Recognition by a
MSO formulas < > finite monoid
L= (fl(F)

» Generic.
» Easy.
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Why look at FO and fragments?

» Simple formulas are better (algorithmically).
» Some parameters making formulas complex:
Second order quantification,

Number of quantifier alternations,

Allowed predicates,

Number of variable names.

vV vy vVvYyy
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First problem: Membership

Membership problem for a fragment F
» INPUT A language L.
» QUESTION Is L expressible in 7?

Can it be defined
with an F formula?

For L a regular language, the following are equivalent:
» L is FO-definable.
» The syntactic monoid of L satisfies u“+! = u®.
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Roprinted from InpoRsaTion ANp CoxTRoL, Volume 8, No. 3, April 1085
Copyright @ by Academio Press Ine. Printed in U.S.A

INFORMATION AND CONTROL 8, 100-104 (1065)

On Finite Monoids Having Only Trivial Subgroups

M. P. ScHUTZENBERGER

An alternative definition is given for a family of subsets of a free
monoid that has been considered by Trahtenbrot and by
MeNaughton.

L INTRODUCTION

Let X* be the free monoid generated by a fixed set X and let Q be
the least family of subsets of X* that satisfies the following conditions
(K1) and (K2):

(K1). X* € Q; {e} € Q (e is the neutral element of X*); X' € Q
for any X' < X.

(K2). If A; and A, belong to Q, then A u 4a,

AM: (= {f € Ar:f € 4))

and Ay-ds (= {fff € X*:f € Ay;f € Au}) belong to Q.

With different notations, Q has been studied in Trahtenbrot (1958)
and, within a wider context, in MecNaughton (1960). According to
Egean (1963), Q contains, for suitable X, sets of arbitrarily large star-
height (cf. Section IV below).

For each natural number 7, let T'(n) denote the family of all epi-
morphisms v of X* such that Card ¥X* < n and that vX* has only
trivial subgroups (ie., " = 3™ for all f € X, cf. Miller and Clifford
(1956)).

MaIN PropERTY. Q ds identical wilh the union Q' aver all n of the families
Q'(n) = {A € X*iy7vA = A;y € T(n)}

(= ("M : M c+X*y € T(n)}).

As an application, if 4, A’  X* are such that for at leas’t one 'trip]e
f,f, 7" € X*,both {n € N:f/" € A} and {n € N :ff%" € A’} are
mﬁnluz sets of integers, we can conelude that no B € Q satisfies 4 € B
and A" € X"\B.

190
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Quantifier alternation

Level i: ¥;
For all 7, a 3; formula is

T1, e Ty VYL, ey Yny e o(Z, 7, ..)
i blocks (starting with 3)  quantifier-free
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Quantifier alternation
Level i: ¥;
For all 7, a 3; formula is

T1, e Ty VYL, ey Yny e o(Z, 7, ..)
i blocks (starting with 3) quantifier-free

3J; is not closed under complement = we get two other classes:

Level i: II; Level i: BY;
Negation of a ¥; formula: Boolean combinations of X;

(and TI,;) formulas.
VT, ooy Ty Y1,y Yng o @

i blocks (starting with V)
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FO Quantifier alternation hierarchy

(State of the art in 2013)

(Simon)’75 (Pir(f,\r\;g:isl;’gs (Schitzenberger)'65
| N
2] iéé 23
© ©  © © ©
B 1—©—A2 BEQ-@-Ag BYgeeenee EO
© © © @ ©
T II5 I3

~

Membership decidable
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Several Hierarchies

» A fragment is obtained by restricting
» Number of quantifier alternations,

» Allowed predicates,
» Number of variable names.
» FO(<), FO(<,+1), FO(<,+1, min, max): same expressiveness.

With restricted alternation, this yields distinct fragments.

¥i(<), Xi(<,+1), and X1 (<, +1, min, max)
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Why we want more than membership

If the membership answer for L

» is YES
» All “subparts” of the minimal automaton of L are F-definable.

» is NO, then even if F can talk about L:

» We have almost no information.

» Eg, for FO, defining L requires differentiating some v~ and u®**.
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Beyond membership: Separation

Decide the following problem:

(Take 2 regular languages L, LQ‘
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Beyond membership: Separation

Membership can be formally reduced to separation

Take 2 regular languages L1, Lo Can L, be separated from L,
with an F formula?

F-separable from complement
&
F-definable
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Motivations for separation

» More general: able to extract information for all languages.
» Cannot start from canonical object for the (unknown) separator.
» Therefore, may give insight to solve harder problems.
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Motivations for separation

v

More general: able to extract information for all languages.

v

Cannot start from canonical object for the (unknown) separator.

v

Therefore, may give insight to solve harder problems.

» 2 transfer results:

» decidability of separation for level X2; of the quantifier alternation
hierarchy entails decidability of membership for ¥, ;.

» decidability of separation preserved when enriching F with +1.

43

= We shouldn’t restrict ourselves to membership.
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Related work

v

Separation already considered in an algebraic framework.

v

First result by K. Henckell ’88 for FO, then for other fragments.

v

Transfer 7 — F[+1]: H. Straubing ’85, B. Steinberg '01 (sep.).

v

Purely algebraic proofs, hiding combinatorial & logical intuitions.

v

Want: Simpler, combinatorial proofs.
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An already known result for FO: Henckell ’88

» Simple algorithm.
» Easy correctness proof.
» Intricate completeness proof.

Guide to the paper

Chapter 1. Elementary definitions and notation should be omitted on first reading
and used as a reference as needed.

Chapter 2. The Pl-functor defines pointlike sets in a general setting and shows by
an abstract compactness argument that PI(S) can be computed by an aperiodic
semigroup.

Chapter 3. Definition of C*(S) and H® defines C*(S), a collection of pointlike
sets, in a constructive manner. ' is the ‘blow-up-operator’ that we will use in
Chapter 5 to show C“(S)=PIS). It has some examples in the end.

Chapter 4. The Rhodes-expansion defines the tools needed in Chapter 5.

Chapter 5. C“(S)=PI(S) shows the main result by actually constructing a rela-
tion S—%- CP(S) computing C*“(S) with CP(S) aperiodic. It uses HY, generalized
to A% on C“(S) ‘to get rid of groups by blowing up’.
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A toy example: Separation for FO(=)

v

FO(=) can just count occurrences of letters, up to threshold.

v

Example: at least 2 a’s: .y = 4y Aalz) Naly).
FO(=) can express properties like
at least 2 a’s, no more than 3 b’s, exactly 1 c.

v

v

How to decide separation for FO(=)?
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A toy example: Separation for FO(=)

» Let 7(u) € N4 be the commutative (aka. Parikh) image of .
m(aabad) = (3,1,0,1).

Parikh’s Theorem
For L context-free, 7(L) is (effectively) semilinear. J

» Forz,je N4, #=,y if Vi ax;=uy; orbothax;, vy > d.
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A toy example: Separation for FO(=)

» Let 7(u) € N4 be the commutative (aka. Parikh) image of .
m(aabad) = (3,1,0,1).
Parikh’s Theorem
For L context-free, w(L) is (effectively) semilinear. J

» Forz,je N4, #=,y if Vi ax;=uy; orbothax;, vy > d.
Fact
Languages L, Ly are not FO(=)-separable iff

Vd  Fuy € Ly 3ug € Ly,  w(u1) =4 w(usg).

Proof. — The FO(=) language {u | w(u) €, m(L;)} contains L;.
Since L1, Lo are not FO(=)-separable, it intersects Ls.
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A toy example: Separation for FO(=)
» Let 7(u) € N4 be the commutative (aka. Parikh) image of .
m(aabad) = (3,1,0,1).
Parikh’s Theorem
For L context-free, w(L) is (effectively) semilinear. J

» Forz,je N4, #=,y if Vi ax;=uy; orbothax;, vy > d.
Fact
Languages L, Ly are not FO(=)-separable iff

Vd  Fuy € Ly 3ug € Ly,  w(u1) =4 w(usg).

Proof. — The FO(=) language {u | w(u) €, m(L;)} contains L;.
Since L1, Lo are not FO(=)-separable, it intersects Ls.

< Assume there is an FO(=)-separator K, say of threshold d.
Then L1 C K = u1 € K = uy € K, impossible since us € Lo.
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A toy example: Separation for FO(=)

Fact
Languages L1, Ly are not FO(=)-separable iff

Vd d¥; € 7T(L1) 7y € 7T(L2), T1 =g To.

Decidability of FO(=)-separation is then implied by
» Parikh’s Theorem, and
» Decidability of Presburger logic.
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Separation for FO(=, +1)

» FO(=) can just count occurrences of letters up to a threshold.
» FO(=, +1) can count occurrences of infixes up to a threshold.

There exist at least 2 occurrences of abba
and the word start with ba.

» For membership, decidability follows from a delay theorem:
To test FO(=, +1)-definability, look at infixes of bounded size.

21/37



Separation for FO(=, +1)

v

FO(=) can just count occurrences of letters up to a threshold.

v

FO(=, +1) can count occurrences of infixes up to a threshold.

There exist at least 2 occurrences of abba
and the word start with ba.

v

For membership, decidability follows from a delay theorem:
To test FO(=, +1)-definability, look at infixes of bounded size.

v

Membership proof not trivial. Transferring separability is easier.
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FO Quantifier alternation hierarchy

(State of the art in 2013)

(Arfiy'87
(Pin, Well) 95

1 : - ©
13§31—(::>— —<::)—[§5 ........
© : : :

Membership decidable

(Simon)’75 (Schitzenberger)’65
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FO Quantifier alternation hierarchy

(State of the art in 2013)

(Almeida,Z.y97

(Henckell)’88

>3] X3
©  © © ©
Ay 522-@-A3 B3
© © @ ©
115 113

Membership Knowledge

A vk

NNNNNNNNNNN

-
Separation Knowledge

22/37



FO Quantifier alternation hierarchy

(Aimeida,Z.)97 (Recent progress)

(Czerwinski,Martens,Masopust)’13
(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’'13 (Henckell)'88

a 7
11222227722777777
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New Separation Knowledge

Membership Knowledge
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FO Quantifier alternation hierarchy

(Almeida,Z.)’97
(Czerwinski,Martens,Masopust)’13 (New state of the art)

(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13 (Henckell)’88
(Place,Z.)’14

77 7 7
11222227722777777

NNNNNNNNNNN

New Separation Knowledge

New Membership Knowledge

By relying on ¥3-Analysis, one can prove
decidable characterizations for BX2,A3,X3 and II3.
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FO Quantifier alternation hierarchy

(Almeida,z.)97 (New state of the art)

(Czerwinski,Martens,Masopust)’13
(Place,van Rooijen,Z.)’13

(Place,van Rooijen,Z.)’13

77 7
11222227722777777

New Separation Knowledge

New Membership Knowledge

T. Place, LICS’15
Separation for 33 (hard)
Decidability for Ay, 34, 114
Still open for BX3

(Henckell)’88
(Place,Z.)’14

NNNNNNNNNNN
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Summary of recent results

Specific results
» Separation reproved for FO, proved for X5, 3.
» Membership for BX, (specific proof).

Transfer results
» Separation of ¥,, entails membership for ¥, ;.
» Separation for F entails separation for F[+1].
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Proofs techniques

FO is hard, let’s make it easy!
Quantifier rank of a formula: Nested depth of quantifiers.
Jz e(x) AVzTy (a(z) = Tz (x<z<yAbly))) rank3

If k£ fixed: finitely many FO properties of rank &
= Separation is easy (test them all).
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Proofs techniques

FO is hard, let’s make it easy!
Quantifier rank of a formula: Nested depth of quantifiers.
Jz c(x) ANVzdy (a(x) = dz(x <z<yAbly))) rank3

If k£ fixed: finitely many FO properties of rank &
= Separation is easy (test them all).

k-equivalence for FO
Let w1y, wo be words:

w1 & wo iff wy, wy satisfy the same formulas of rank &

All FO properties of rank k are unions of classes of =z,
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Fixed Quantifier Rank k&

()

Let’s add the ~-classes

25/37



Fixed Quantifier Rank k&

e
®

Separable with rank k iff no =;-class intersects both languages

A*

For full FO we want to know if there exists such a &
= Compute a ’limit’ for ~.
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Fixed Quantifier Rank k&

A*

‘A'
7 °
/ :
S
Separable with rank k iff no =;-class intersects both languages

For full FO we want to know if there exists such a &
= Compute a ’limit’ for ~.

When k gets larger, ~; is refined but it never ends
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Fixed Quantifier Rank k&

Separable with rank k iff no =;-class intersects both languages

For full FO we want to know if there exists such a &
= Compute a ’limit’ for ~.

When k gets larger, ~; is refined but it never ends

Idea. Abstract =, on a finite monoid recognizing both L; and L.
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“Pair” analysis
Fix a : A* — M. Compute l;[a], k-indistinguishable pairs.

FO-indistinguishable pairs for a : A* — M
(SL, .S‘g) S Ik[a] if

» Smaller and smaller sets: I, [a] C I,[a].
> Limit set: lja] = ), Ix[c].
» Computing these pairs solves separation:

(s1,s2) € 1]a] = o 1(s1) and o~ !(sq) not separable
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“Pair” analysis

» Smaller and smaller sets: I, [a] C I,[o]
» Limit set: lja] = ), Ix[c.

What have we gained?

We work with finite semigroups = the refinement stabilizes.
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“Pair” analysis

» Smaller and smaller sets: I, [a] C I,[o]
» Limit set: lja] = ), Ix[c.

What have we gained?

We work with finite semigroups = the refinement stabilizes.

It may happen that I, [a] = I,.[a] before stabilization.
It may happen that

> (:I: .s'j) € l[a],

> ( c { ,

]
> but . 1) ¢ 1o (no transitivity).
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The Separation Criterion

Separation Criterion
Ly, Ly recognized by o : A* — M are not separable
iff
there are accepting elements s1, sy € M for Ly, Ly s.t. (s1,s2) € l[a].
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The Separation Criterion

Separation Criterion
Ly, Ly recognized by o : A* — M are not separable
iff
there are accepting elements s1, sy € M for Ly, Ly s.t. (s1,s2) € l[a].

Computing I[«] suffices to solve separation.
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Two approaches to compute I[a]

Brute-force

» k fixed: computing I;[a] easy.
» l[a] = Ix[a] for some k.

» = Prove a bound k = f(a),
Compute Iy [a].

Algorithm

Algorithm bypassing the bound k:
Direct fixpoint computation of 1]a].
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Two approaches to compute I[a]

Brute-force

» k fixed: computing I;[a] easy.
» l[a] = Ix[a] for some k.

» = Prove a bound k = f(a),
Compute Iy [a].

Algorithm

Algorithm bypassing the bound k:
Direct fixpoint computation of 1]a].

We use approach 2.
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A first (non complete) algorithm computing l[a]

ldea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

[1 st Property of FO]

w X w

30/37



A first (non complete) algorithm computing l[a]

ldea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

[1 st Property of FO]

w X w

1. Trivial pairs: for all w € A* (a(w), a(w)) € l]e]
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A first (non complete) algorithm computing l[a]

ldea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

[ 2nd Property of FO ]

w1 R W and U X U2 = WwiUl ) WU

1. Trivial pairs: for all w € A* (a(w), a(w)) € l]e]
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A first (non complete) algorithm computing l[a]

ldea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

[ 2nd Property of FO ]

w1 R W and U X U2 = WwiUl ) WU

1. Trivial pairs: for all w € A* (a(w), a(w)) € lo
2. Operation «: (s1,s2) € l[a] and (t1,t2) € lla] = (s1t1, s2t2) € l[a]
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A first (non complete) algorithm computing l[a]

ldea. Start with trivial pairs. Add more pairs via a fixpoint algorithm.

3rd Property of FO
Vk dn Ywy,wy € A* wi R we = (w1)" =, (w2)n+1

1. Trivial pairs: for all w € A* (a(w), a(w)) € l]e]

2. Operation «: (s1, s2) € l[a] and (t1,t2) € lja] = (s1t1, sate) € l[a]

3. Operation w: (s1,89) € lja] = (s%,55™) € 1[a]

Correct by definition but not complete
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Why it does not work

3rd Property of FO
w1 A wo = (w1)"™ ~p (wy)"H
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Why it does not work

Not general enough

3rd Property of FO
w1 A wo = (w1)"™ ~p (wy)"H

| Needs to be replaced |

A

w1 R W R, + - B, W

4

All large concatenations of words in {wy, ..., w,,} are ~;-equivalent.
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Need for better analysis

A Generalization: FO-indistinguishable Sets for o : A* — M:

> {.S’l,.‘v‘g,. . .,.‘v‘/,} & Ik[O[] |f

» Limit set: lja] = ), lx[c].
» Computing these sets is more general than computing pairs.

= also solves separation (and gives much more).
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From Pairs to Sets

New Objective

We want to compute the set I[a] C 2 such that:

T ella] iff T € I]a], Yk e N
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From Pairs to Sets

New Objective

We want to compute the set I[a] C 2 such that:

T ella] iff T € ly[a], Yk € N

Remark
» With our new definition, we have l[a] C 2V,
» 2M js a monoid for operation

T -Th = {tltg | t1 € T to ETQ}
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A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

[1 st Property of FO]

w R w
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A new (working) Algorithm

Idea : Start with trivial pairs. Add more pairs via a fixpoint algorithm.

3rd Property of FO
W1 R W+ R Wi,
)
All large concatenations of words in {w1, - - -, w,,} are ~;-equivalent.

1. Trivial sets: for all w € A* {a(w)} € lq]
2. Operation «: T} € l[a] and T3 € l[a] = T1T5 € l[q]
3. Operation w: T € l[a] = (T* UT“*) € I[a]

Correct by definition (e.g., use EF games)
Can be proved to be complete
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Tools

» Ehrenfeucht-Fraissé games.
» Combinatorial tools: Simon’s Factorization Forests & Ramsey.
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Conclusion

We shouldn’t restrict ourselves to membership
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Conclusion

We shouldn’t restrict ourselves to membership, nor to separation.
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Conclusion

We shouldn’t restrict ourselves to , hor to

» Freezing the framework (to membership or separation) yields
limitations.

» This work is just a byproduct of the observation that one can be
more demanding on the computed information.

» Generalizing the needed information is often mandatory.
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Thank Youl!
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